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Abstract— Objective: Volatile Organic Compounds (VOC) in 

exhaled breath as measured by electronic nose (e-nose) have 

utility as biomarkers to detect subjects at ris of having lung 

cancer in a screening setting. We hypothesize that breath analysis 

using an e-nose chemo-resistive sensor array could be used as a 

screening tool to discriminate patients diagnosed with lung 

cancer from high-risk smokers.  

Methods: Breath samples from 191 subjects – 25 lung cancer 

patients and 166 high-risk smoker control subjects without 

cancer – were analyzed. For clinical relevancy, subjects in both 

groups were matched for age, sex, and smoking histories. 

Classification and Regression Trees and Discriminant Functions 

classifiers were used to recognize VOC patterns in e-nose data. 

Cross-validated results were used to assess classification 

accuracy. Repeatability and reproducibility of e-nose data were 

assessed by measuring subject-exhaled breath in parallel across 

two e-nose devices.  

Results: E-nose measurements could distinguish lung cancer 

patients from high-risk control subjects, with a better than 80% 

classification accuracy. Subject sex and smoking status impacted 

classification as area under the curve results (ex-smoker males 

0.846, ex-smoker female 0.816, current smoker male 0.745 and 

current smoker female 0.725) demonstrated. Two e-nose systems 

could be calibrated to give equivalent readings across subject-

exhaled breath measured in parallel. 

Conclusions: E-nose technology may have significant utility as 

a non-invasive screening tool for detecting individuals at 

increased risk for lung cancer.  

Significance: The results presented further the case that VOC 

patterns could have real clinical utility to screen for lung cancer 

in the important growing ex-smoker population. 

 
Index Terms—Breath analysis, electronic nose, sensor array, 

Volatile Organic Compounds, lung cancer, pattern recognition. 
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I. INTRODUCTION 

UNG cancer is the leading cause of cancer death 

worldwide, with the number of deaths attributable to lung 

malignancy increasing steadily for years [1]. Lung cancer is 

usually diagnosed in its later stages and as a result its 5-year 

survival rates are very poor. Earlier clinical identification and 

management of disease would greatly increase survival rates 

[2]. Computed tomography (CT) is one of the most commonly 

used imaging methods to diagnose lung cancer. The recently 

published NLST study has shown that low dose CT (LDCT) 

reduces mortality from lung cancer when used for early 

detection. CT, however, is relatively expensive, involves 

radiation and is associated with false positive results that 

necessitate further CT follow-up or invasive diagnostic 

procedures [3, 4]. There is an identified need for inexpensive, 

reliable, and non-invasive methods capable of identifying 

individuals at risk of harboring lung cancer. This type of 

targeted approach will improve the efficacy of an early lung 

cancer detection program utilizing LDCT. 

It has long been known that human breath provides useful 

information on health conditions [2, 5]. Respiratory diseases 

such as asthma, chronic obstructive pulmonary disease 

(COPD) and cystic fibrosis may be identified from the breath 

odor [6]. This is due to the existing equilibrium between 

compounds in the alveolar air and pulmonary blood once gas 

exchange has occurred in the lungs [7]. Recently, exhaled 

breath analysis has been introduced as a possible diagnostic 

tool to identify the presence of diseases such as lung cancer 

[8-12]. 

Exhaled breath contains mixtures of many volatile organic 

compounds (VOCs) as identified by gas chromatography (GC) 

and mass spectrometry (MS) [13-16]. It is known that several 

diseases and altered metabolism may cause unique VOC 

signatures [17-19]. Many studies have sought useful chemical 

mixtures in breath that characterize lung cancer: many VOCs 

quantified by GC-MS have been identified in exhaled breath 

samples, combinations of which can characterize lung 

malignancies [20-25]. However, GC-MS methods are 

complex, expensive, time-consuming, require expert analysis, 

and do not produce real-time results – all of which limit the 

utility of this approach in clinical practice [21, 26]. A non-

invasive tool to monitor the olfactory signal and to recognize 

VOC patterns is electronic nose technology [27, 28]. 
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An electronic nose (e-nose) is a VOC recognition device 

consisting of an array of sensors (chemo-resistive, acoustic, 

pyroelectric, optical, etc.) with partially overlapping 

sensitivities that can produce digital “smell-prints” of specific 

VOCs. The chemo-resistive sensors used in this work can be 

highly sensitive to specific VOCs in human breath; they detect 

effects of VOCs through a chemical reaction and accordingly 

generate an electrical impulse. These sensors may be 

electrodes coated with reactive compounds. Once these 

sensors are exposed to exhaled breath – depending on the 

existing chemical constituents – the sensors’ electrical 

conductance characteristics change, causing a measurable 

resistance change. Data obtained from a sensor array is then 

analyzed using pattern recognition techniques to obtain a 

unique response pattern corresponding to a specific odor. The 

e-nose is capable of non-invasive measurement of breath 

samples as well as real-time analysis of breath chemicals – 

both of which make it attractive for wide application as a 

screening technology. 

The Cyranose 320 (Smiths Detection Inc.), which was used 

for this work, is one type of portable e-nose system consisting 

of 32 polymer composite sensors. Once a gas mixture passes 

across the sensor array, its chemical components induce 

reversible changes in the electrical resistance of the sensors. 

Sensors are made cross-responsive, so that the detection of a 

particular VOC is based on a 32-dimensional response pattern 

of the array rather than a single sensor. According to the 

chemical diversity of the array material, resistance changes in 

the 32 sensors results in a unique pattern of electrical 

resistance differences (“smell-prints”). During the 

measurement process the Cyranose 320 records its operational 

state (measuring subject air, measuring control air, purging 

sample chamber, etc.) in addition to the outputs of the 32 

sensors. The operational state is recorded as a flag status 

variable. 

Here, we hypothesize that breath profiling by e-nose is 

capable of differentiating patients with early stage, potentially 

curable lung cancer from matched high-risk control subjects 

without lung cancer. Several recent studies have been 

conducted on e-nose applications for detection of lung cancer 

[8-11]. Tran et al. [11] employed an e-nose system consisting 

of an array of 6-channel coated chip sensors to discriminate 

lung cancer patients from control subjects consisting of 

smokers, non-smokers, and patients with respiratory disorders. 

Their results included response curves from each channel for 

parameters such as rate to peak height, peak height, rate to 

recovery, and area under the curve, with significant 

differences observed between test groups. Machado et al. [9] 

also applied the Cyranose 320. They showed 71.4% sensitivity 

and 91.9% specificity for the identification of lung cancer 

patients, though their comparison groups were not well 

matched as the control group consisted of patients with several 

types of pulmonary diseases. Dragonieri et al. [8] used the 

same e-nose system for the discrimination of non-small cell 

lung cancer, COPD patients, and non-smoker healthy controls. 

They reported 85% classification accuracy for distinguishing 

lung cancer patients from COPD patients and, analyzing two 

sets of measurements (to confirm reproducibility), an average 

of 85% for the identification of lung cancer patients from 

healthy controls, Mazzone et al. [10] used colorimetric sensor 

array technology to discriminate lung cancer patients from 

controls, with 73.3% sensitivity and 72.4% specificity. The 

authors also mentioned that if experiments focused on one 

histological disease subtype only – e.g. lung squamous cell 

carcinoma – then model accuracy would be improved. This 

led them to conclude that patients with various lung cancer 

histologies could be distinguished accurately. Cheng et. al. 

[29] also investigated the use of Cyranose 320 to distinguish 

the exhaled breath of smokers and non-smokers and reported a 

classification accuracy of 95%.  

Although studies have assessed e-nose potential for 

distinguishing lung cancer patients from controls, a well-

matched control group has generally not been used to facilitate 

comparisons and many of the included lung cancers were of 

more advanced stage [8-11]. To address these issues, we 

included stringent demographically-matched sets in both 

control and lung cancer groups – and only included patients 

with clinical Stage I/II lung cancer. Also, to account for 

potential confounding effects due to smoking, we recruited 

current or former smoking subjects only (i.e. excluding never 

smokers). A key novelty of this study then is the comparison 

of a well-matched set of high risk current/former smokers to 

lung cancer patients with the same demographic risk 

indicators: age, sex, similar number of pack-years of smoking 

history, and smoking status. The aims of this study were 1) to 

test the proposed hypothesis on well-matched patient groups 

and validate the classification model, 2) to assess the effects of 

sex and smoking on e-nose measurements, 3) to assess system 

reproducibility (in consideration of downstream clinical 

utility), 4) to evaluate if “time of day” impacted e-nose 

responses, and 5) to study if changing the equipment could 

introduce a systematic bias to the exhaled breath data for a 

more accurate analysis. This paper is organized as follows: 

Section II describes study methods; Section III describes 

experimental analyses; Section IV presents the experimental 

results and discussions; and Section V provides our 

conclusions based on our work. 

II. MATERIALS AND METHODS 

A. Study Population and Design 

We applied a combined cross-sectional case-control study 

design to delineate lung cancer patients from high-risk heavy 

smokers without detected cancer. Control subjects were 

individuals at risk for lung cancer who were involved in a lung 

cancer screening study and lung cancer patients were from 

local referrals, recruited from the BC Cancer Agency (BCCA) 

and Vancouver General Hospital (VGH). The Review of 

Ethics Board of the University of British Columbia approved 

this study. Informed consent was obtained in all participants. 

A total of 206 subjects participated in this study. Data for 

our primary analysis were derived from 191 current/former 

smokers placed into two categories based on diagnosis at the 

time of enrollment: lung cancer patients and non-cancer 
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control cases. (Fifteen cases [206 – 191] were held in reserve 

as a test set.) Subjects ranged in age from 45-79 years, could 

be male or female, and were restricted to current and ex-

smokers with smoking histories of ≥20 pack-years. Clinical 

features of this population are described in Table I (age and 

pack-years values are expressed in the form of mean ± SD). 

No statistically significant differences were observed between 

the "High-risk Smoker" and "Lung Cancer" groups in terms of 

sex, overall smoking status, and pack-year histories. A 

significant difference in the age of the patients was noted (p = 

0.01, t-test), however we also note a high degree of overlap in 

the ages of these cohorts. There was also a statistical 

difference in the distribution of COPD between the control 

and lung cancer cases (note COPD status for 4 of the lung 

cancer cases were not available. No statistical differences in 

scores were observed i) based on age differences or ii) based 

on any combination of age/ sex/ smoking /COPD.status 

variables.  
TABLE I 

CLINICAL CHARACTERISTICS OF THE STUDY POPULATION 

Characteristics 
High-risk 

Smokers 
Lung Cancer 

Patients (n) 166 25 

Age (y) ± SD 62.8 ± 6.7 66.5 ± 6.0 

Sex (M|F) 86|80 12|13 

Current Smokers (n) 87 9 

Former Smokers (n) 79 16 

Pack-years (n) ± SD 

COPD Status (Y|N)  

High blood pressure 

High Cholesterol 

Congestive Heart Failure 

Transient Ischemic Attack 

Asthma 

Bronchitis 

Pneumonia 

Diabetic 

45.6 ± 17.8 

68 | 97 

50 

45 

0 

4 

21 

39 

42 

         9 

47.5 ± 20.6 

17 | 4  

7 

4 

1 

2 

4 

7 

6 

   2 

 

The “High-risk Smokers” category contained 166 control 

subjects with high risk for lung cancer. These patients were 

recruited as part of a LDCT-based early lung cancer detection 

program at the BCCA. They showed no evidence of lung 

cancer on baseline CT or CT scan surveillance (mean follow-

up time was 15.2 months). The second group contained 25 

patients with a histologically-confirmed diagnosis of lung 

cancer. Table II shows the clinical characteristics of patients 

diagnosed with lung cancer with respect to their lung cancer 

histological subtypes. The distribution of co-morbidities for 

these cancer patients and controls are shown in Table 1. There 

were no statistically significant differences in the co-

morbidities between the controls and the cancer patients. Four 

of the lung cancer patients had previous cancers (lung, 

cervical, colon and breast).  All cancer diagnoses were 

confirmed with cytology, biopsy, or surgical resection and the 

reported staging is post-surgery for all but 3 patients and all 

but one patient had a PET scans to further inform their 

staging. One patient had concurrent breast cancer for which 

they had started chemotherapy otherwise all patients were 

sampled prior to treatment.  

 
TABLE II 

COMPOSITION OF LUNG CANCER PATIENTS 

Cancer Type Number 
Mean tumor 

diameter 

Sex 

(M|F) 

Small Cell Lung 

Carcinoma 

1 20.0 mm 1|0 

Non-Small Cell Lung 

Carcinoma 

2 6.4 mm 0|2 

Adenocarcinoma 20 20.0 mm 11|9 

Squamous Cell 

Carcinoma 

2 28 mm 2|0 

    

For all the different classification training methodologies 

used in this study we divided these 191 subjects into at least 

two independent groups: a learning set and a test set. The 

classifier we sought to define would distinguish lung cancer 

patients from high-risk smokers based on a predictive 

relationship. The predictive relationship was defined by non-

blind analysis of a defined learning set. After the model was 

constructed, blind analysis was performed on the test set to 

validate the predicted model. A addition data set consisted of 

measurements from 15 healthy non-smokers subjects. Data 

from these cases were used to assess inter-system 

reproducibility and exhaled VOC sensitivity to subject fasting. 

B. Exhaled Breath Collection 

The breath collect for all cases were acquired in the same 

clinical setting at the BCCA. Subjects breathed humidified 

medical air. Exhaled breath was collected in Mylar gas-

sampling bags (Fig. 1). Briefly, patients first inhaled and 

exhaled medical air for alveolar washout. Three deep (vital 

capacity) breaths were taken, with exhaled air vented to the 

room. System valves were next turned and all the exhaled air 

was collected in sampling bags (with entire breath samples 

collected, not just an alveolar fraction). Three to five exhaled 

breaths filled collection bags sufficiently. The breathing 

circuit was closed and had no exposure to ambient air. 

Collected exhaled breath was sampled by the e-nose five times 

(l = 1..5), with this process interspersed with bursts of 

humidified medical air to flush the circuit. Humidified air was 

tested as the baseline against which VOCs from each patient 

were measured. The pattern of sensor responses to the VOCs 

present was recorded during the five repeat measurements.  

C. Data Processing and Statistical Analysis 

The typical raw signal obtained from an e-nose sensor as 

well as the flag variables is shown in Fig. 2. Data is color 

coded by the flag variable status, which determines the stage 

of the experiment, at the time of the measurement. The raw 

signal required correction for baseline drift. Baseline data 

points (time points when the flag variable had values 1 and 7 

and the system was full of humidified medical air) were fitted 

using a 5th order polynomial, which was then used to predict 

the baseline during data measurements (time points when flag 

variable was 3), which were subtracted from the raw signal. 

After this, each of the five baseline corrected e-nose data 

measurements was fitted by a double exponential curve to 

extract the rise time and amplitude of each sensor response to 

each of the five samplings of exhaled breath. 
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Fig. 1. Schematic of system framework and sample collection. 

 

Fig. 2. Typical raw sensor response, with highlighted flags.  

Finally, the value predicted by the double exponential at the 

midpoint of the measuring process was recorded for each of 

the five samplings. Fig. 3 shows an example of a sensor’s fully 

processed and fit data. All 32 sensor e-nose array responses 

(S1,…, S32) were processed this way. After this correction 

there was no statistically significant difference between any 

of the five measurements and for the majority of analysis 

(unless specifically stated otherwise) we averaged over the 

five measurements to determine the most representative sensor 

response for the breath analysis. Our analysis differs from 

previous works [8-11] in that we used resistance changes in 

combinations of two sensors rather than as individual sensors, 

as no correlation with exhaled breath from cancer patients vs. 

high risk controls was observed in individual sensor data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Data processing: an example of fully processed sensor data and the five 

sensor responses measured. 

For each combination of pairs of sensor data, a regression 

line for only the measurements from the high-risk controls was 

calculated. To make the regression analysis robust to outlier 

data, we excluded the 5% most variable cases from the linear 

fitting process. For each sensor pair, the data were projected 

onto and along the linear regression line determined for that 

pair using the following process: for each sensor pair 𝑆𝑖𝑆𝑗, we 

let α and �̂�𝑖 be defined as follows: 

                                𝛼 ≜ −𝑡𝑎𝑛−1(𝑚),                              (1) 

                                   �̂�𝑖 ≜  𝑆𝑖 −  𝑏,                               (2) 

 

For i = 1,…, 32: 

 Baseline Drift Correction: 

1. For each measurement instance (l = 1, …, 5), find all 

data points with flag 1 (baseline samples) and last 10 

flag 7 data points (trial end). 

2. Remove the first five baseline data points. 

3. Fit baseline data with a 5th order polynomial. 

- Let BLi, fit be the fitted polynomial. 

- Let Si, BL_corr be the baseline corrected signal: 

Si, BL_corr = Si - BLi, fit. 

 Response Extraction for each sensor: 

For l = 1, …, 5: (each of the measurement instances) 

1. Fit flag 3 data points of each measurement instance, 

with a double exponential function. (Ti, l fit) 

2. Set the  representative measure to be the 

midpoint of the fit function Tl  = T i, l fit (tM), (where tM 

is the mean of flag 3 time points for the measurement 

instance l. 

 Si is [T1, …, T5]. 
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where m and b are the slope and the intercept of 𝑆𝑖𝑆𝑗 

regression line for the control samples onto which the data 

were projected. The projection of the data onto this new axis 

was accomplished using the following equation. 

              [
𝑥′

𝑆𝑖𝑆𝑗

𝑦′
𝑆𝑖𝑆𝑗

] =  [
cos (𝛼) −sin (𝛼)
sin (𝛼)    cos (𝛼)

]  × [
𝑆𝑗

�̂�𝑖

].                (3) 

Following the projection of all patient and control subject 

data onto these regression lines, most transformed data 

(𝑥′
𝑆𝑖𝑆𝑗

, 𝑦′
𝑆𝑖𝑆𝑗

) showed some degree of separation between 

exhaled breath from cancer patients vs. high risk controls (this 

is represented in later figures). 

D. Classification and Model Validation 

To classify data by cancer status, we used Classification and 

Regression Trees [30] as well as Discriminant Function 

Classifiers [31]. Prior to any classification methods being 

applied, we reduced the dimension of the feature space in two 

ways: 1) a Mann-Whitney-Wilcoxon (MWW) test was 

performed to extract the 25 most discriminant descriptors in 

the transformed feature space and 2) we visually assessed 

scatter plots of the transformed pairs of sensor readings and 

selected the 25 most discriminant pairings based on the visual 

perception of two study authors (CM, PB).  

1) Classification and Regression Trees: Classification and 

regression tree (CART) analysis is a non-parametric greedy 

technique for building predictive models from the data using 

decision trees (Statistica, Version 10, Stat Soft Inc.).  Where 

there are numerous features in the data with complex non-

linear interactions, building a single global model is not an 

efficient choice. In such cases, greedy algorithms using trees 

which combine the locally optimal structures to build a global 

optimal model is an appropriate solution. We used CART as a 

binary classifier to categorize data into cancerous and non-

cancerous groups. To increase the generalizability of the trees 

generated by CART, we limited the number of nodes in the 

trees to ~2-3 by altering stopping conditions.  

2) Discriminant Function Analysis: Forward stepping 

Discriminant Function Analysis (DFA) (Statistica, Version 10, 

Stat Soft Inc.) is another statistical tool used to determine a set 

of predictors for building a classification model. DFA creates 

discriminant functions corresponding to linear combinations 

of predictors which maximize between-group differences 

relative to within-group differences of the datasets to be 

separated. To assess analysis robustness and the likely 

accuracy of the predicted model for subsequent data, we 

partitioned data into training and test sets in multiple ways.  

2.1) K-fold Cross Validation: In this approach, data were 

randomly split into K groups. For each K-fold test, one group 

is removed from the set and is considered as the test set, while 

the remaining K−1 groups form the training set. The model is 

built on the training set and is validated on the test set. This 

procedure is repeated for each of the K folds and K results are 

finally averaged to produce the K-fold estimate of the 

classification accuracy. 

2.2) Instrumentation Bias Corrections: During preliminary 

analysis of the data, changes in instrumentation configuration 

were observed to add a correctable systematic bias. More 

specifically, these changes were related to medical air supply 

sources (was found to be minimal) and gas-sampling bags 

(which are discussed in greater detail in Section II.H., below, 

but were found to be large enough to affect results). To fully 

evaluate the possible effects of this bias, we set the data 

collected in the original configuration as the training set and 

the bias-adjusted data collected using the alternate 

configuration as the test set, thus intentionally maximizing the 

effect this bias (and our attempted corrections) might have on 

the generalizability of the classification process. 

2.3) Repeated Random Sampling Spanning Instrumentation 

Bias Groups: Here, the dataset was randomly split into a 2/3 

training set and a 1/3 test set, making sure to equally distribute 

the bag biased data between the training and test sets. Similar 

to the previous approaches (above), the model was predicted 

on the training set and was evaluated on the test set for each 

split. We performed this random procedure ten times and 

averaged the classification outcomes to estimate the overall 

accuracy the system was likely to achieve on a new data set. 

E. Discriminating Subject Breath samples 

To reduce the dimensionality of the data and to extract the 

most discriminant features, we performed Mann-Whitney U 

test as well as visual feature selections on relative distances. 

The most discriminant features were then used as inputs to 

several classification algorithms. CART was used as the first 

approach to find the classification model where we limited the 

number of nodes in the trees to 2-3 to minimize overtraining. 

Ten-fold global cross validation was done to estimate 

generalized performance of the CART model on new data. For 

the DFA models the data was treated in three different ways: 

1) Samples Containing All the Data (AD): A descriptive 

model was predicted on a random 2/3 of the data and tested on 

the remaining 1/3 of the data. This random sampling was done 

nine additional times and in this way 10-fold cross validation 

was performed on the model obtained from the training set to 

assess how well the model could be generalized. 

2) Samples Containing Data from Bag I Training (B1T): 

DFA was performed on the data collected using the first bag 

type as the training set. After the classification model was 

computed from the training set, its predictive accuracy was 

evaluated by employing it on the independent test set (bias-

adjusted data collected using the second bag type.) 

3) Samples Containing Randomly Selected Data (RSD): 

Repeated random sampling tests were performed on the data 

to evaluate its robustness in differentiating cancer patients 

from high-risk control subjects. The original dataset was 

divided ten times into the training set (2/3 of each bag type) 

and the test set (the remaining samples.) This differed from the 

AD analysis insofar as RSD group would have an even 

distribution of bag types in each set (whereas the AD group 

sampled data without consideration for bag type). After the 

classification model was computed for the training set in each 

split, the model was validated on the test set. The results were 

finally averaged to produce a single estimation. 
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F. Reproducibility and Repeatability 

For the e-nose to be of clinical utility for screening high risk 

subjects, it must be possible to calibrate multiple e-nose 

systems such that the measures made on one system are 

comparable to those on another system. This will allow a 

classification methodology trained on one system to be 

applied to data acquired on additional systems.  We therefore 

must be able to duplicate the systems behavior in different 

settings. To evaluate our ability to calibrate multiple systems, 

we next compared the exhaled breath results obtained from 

two e-nose devices that measured the same exhaled breath at 

the same time. Fig. 4 shows the schematic diagram of the 

experimental setup and results and discussion of these results 

are provided in subsequent sections. 

 

Fig. 4. Schematic for reproducibility experiment (see also Fig. 1). 

G. Evaluating the pre- and post-prandial analysis 

To examine the possibility that the fasting state of the 

subject/patient could affect the concentrations of VOC present 

in exhaled breath, we included a comparison of eight 

individuals’ e-nose responses from when they were in the pre- 

and post-prandial states in order to study if that is a potential 

factor in affecting the VOC patterns. For this study pre-

prandial was after a minimum of 8 hours of fasting (the usual 

fasting of no food from 12:00am till time of measurement). 

Post –prandial indicated measurements within 2 hours of food 

consumption (no dietary restrictions were implemented). 

H. Evaluating Possible Systematic Bias 

Over the duration of this study the system used to collect 

the exhaled air from the subjects and patients unavoidably 

changed. As the system was based upon the comparison of 

exhaled breath against humidified control air (medical grade 

air, Air Liquide Canada Inc., Quebec) over the duration of the 

study, eight different tanks of medical air were consumed. 

Thus a systematic bias associated with the different tanks used 

was possible. Further, with study recruitment ~2/3 complete, 

we switched from commercially produced air collection bags 

to in-house produced air collection bags. This equipment 

alteration could also have introduced a systematic bias to the 

exhaled breath data. Both of these possible bias sources would 

have manifested as distinct biases observable over time as the 

air tanks were replaced or as in-house airbags were used.  

1) Medical Air Supply Batch Effects: As standard operating 

procedure, every day that subject/patient exhaled breath 

sample was measured, a calibration sample was measured 

(humidified medical air). We referred to these calibration 

measurements as calibration controls and they were used to 

evaluate systematic bias and system drift over the duration of 

the project. Over the life-time of this project, the medical air 

tank was replaced seven times (for a total of eight tanks being 

used). We plotted the measurements obtained from the 

calibration controls over time and compared them to the 5-trial 

data measurements obtained from 191 subjects to see if 

changing the medical air tank affected the measurements. 

2) Gas-Sampling Bag Effects: During this study, exhaled 

breath collection bags were changed from commercially 

produced bags to bags produced in-house. To assess if this bag 

type switch led to systematic biases in the data, we traced data 

obtained from subjects over time and highlighted 

measurements obtained from each bag type. 

III. EXPERIMENTAL RESULTS 

As discussed in Section II, in addition to the evaluation of 

e-nose potential in discriminating lung cancers from control 

subjects, this study contains several experiments regarding the 

potentially effective factors in e-nose responses. The outcomes 

of such experiments as well as the classification performance 

of the e-nose system are provided in subsections below.  

A. Results Discriminating Subject Breath samples 

We first assessed whether pre-processed data could 

distinguish lung cancer patients from high-risk smokers. As 

noted, while no single sensor differentiated cancer patients, by 

observing combinations of sensors, patients with lung cancer 

could be delineated. Fig. 5 shows the 2D plot of Y’
ij versus X’

ij 

for a sensor combination as an example. 

 

Fig. 5. Two-dimensional plot of Y’
ij versus X’

ij for Sensor1-Sensor6 smell-

prints, showing the discrimination of lung cancer patients (triangles) from 

high-risk smokers (squares). 

CART was used as the first approach to generate a 

classification model. Classification results obtained by CART 

– particularly specificity, sensitivity, and the 10-fold global 

cross-validation classification accuracy are summarized in 

Table III. Table IV shows the Area Under the Curve (AUC) of 
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the ROC for both the training and test sets for the three 

different training test set splits. Fig. 6 shows the ROC curves 

for both the training and test sets for the different set splits 

used to train the DFA models (AD, B1T, RSD). 

 
TABLE III 

CART APPROACH: PREDICTION ACCURACY OF E-NOSE SYSTEM IN LUNG 

CANCER DETECTION 

Number of Features 

Used 
2 3 

 

4 

Specificity 63.3% 81.3% 81.3% 

Sensitivity 96% 84% 88% 

Validation Set(s) 65% 80.6% 75.4% 

 

 

TABLE IV 

DFA APPROACH: PREDICTION ACCURACY OF E-NOSE SYSTEM IN LUNG 

CANCER DETECTION 

Approach AD B1T RSD 

ROC AUC Training 0.838 0.836 0.836 

ROC AUC Test 0.766 0.797 0.803 

 

 

 
Fig. 6.  DFA Receiver Operating Characteristic curves for three different 

training-test set models. 

 

Not unexpectedly, the best classification prediction on the 

10-fold cross-validation test sets occurred using the RSD 

training-test set methodology. The DFA for each of the three 

training-test set splits on average the forward stepping DFA 

selected between 3–4 features from the 25 available. There 

were two features (Y’
9,18, Y

’
6,20) in the intersection between the 

features selected by the CART models and the 3–4 most 

frequently selected features across the 10–fold cross validation 

DFA models. We selected these two features for a more 

detailed analysis across the four demographically definable 

sub sets within the data (Male, Female, Current Smokers and 

Former Smokers). To avoid effects due to differences in 

cancer subject frequency, all analyses were performed only for 

non-cancer subjects. Also, due to the smaller number of cases 

in the subgroups (1/2 to 1/4 of the full set), we limited all 

group/ subgroup analysis to the two features selected above. 

We found a statistically significant difference (p=0.016, 

MWW) between males and females subjects for one of the 

features (Y’
9,18).  When we examined this difference further 

we found while there was no difference between the 

subgroups ex-smokers male vs. ex smokers females (p=0.78), 

there was a statistically significant difference between the 

subgroups of current smokers male vs. current smokers 

females (p=0.0075) for Y’
9,18. When we examined if this 

difference would affect a DFA model’s ability to correctly 

classify cases we observed the behavior in Fig. 7. The ability 

of a DFA model to correctly predict sample classification in 

the RSD test set appeared to depend to a small degree on the 

sex of the subject (Male ex-smoker AUC 0.846, Male current 

smoker AUC 0.745 vs. Female ex-smoker AUC 0.816 and 

Female current smoker AUC 0.725). Also, the smoking status 

of the subjects appeared to impact the sample classification 

prediction by the DFA model to a larger degree: Ex-smoker 

male AUC 0.846 and Ex-smoker female AUC 0.816 vs. 

Current smoker male AUC 0.745 and Current smoker female 

AUC 0.725 (see Fig. 7). 

 

B. Evaluating Effects of COPD 

For the 186 cases (165 controls and 21 cancers) with known 

COPD status we did not find any statistically significant 

correlation between the scores used to differentiate lung 

cancer cases from controls across COPD status for the 

individual sensors or combinations. We were able to use the 

enose sensor data to train a discriminate function analysis 

(DFA) to differentiate between COPD and non COPD cases 

(P=0.00004).  This DFA had superior performance for the 

recognition of COPD in current smokers compared to the ex-

smoker group results. However this COPD DFA score was not 

statistically significantly different between the controls and the 

cancer cases (p=0.07). These results indicate that while  the 

enose could differentiate between COPD and non COPD cases 

in agreement with the much more detailed analysis performed 

by Fen et al.[19,32,33] the features or feature combinations 

the COPD DFA used were different (and to some extent 

orthogonal to) the features and feature combinations used to 

differentiate cancer cases from controls. 

 

C. Evaluating Reproducibility and Repeatability of E-nose 

Systems 

For this evaluation, we employed two e-nose systems and 

obtained array responses for 15 samples on both systems. We 

then used this data to generate a translation matrix based upon 

sensor means for the 15 samples enable the adjustment of 

sensor measurements made on the second system to be 

equivalent to those that would have been recorded if the first 

system had been used.   

From an analysis of the 5-series measurements from seven 

non-smoking subjects sampled in parallel by the two systems 

(35 measurements in total), we observed that the two systems 

could be made substantially equivalent with a sensor by sensor 

average linear correlation R value of 0.69 with a range of 0.11 

to 0.96 across the 32 sensors. However ~10–12 sensors had 
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Fig. 7. DFA Receiver Operating Characteristic curves for the four 

demographic subgroups using the RSD 10-fold test set results. 

 

very low readings (non-detectable reactions to the VOC 

mixture exhaled by non-smokers) as seen in their very low 

signal to noise ratios (<3) as defined as the average variance 

between individuals divided by the average variance within 

the five repeat measurement instances for each individual.  For 

those sensors with a S/N > 3, 1) the average R value was 0.79 

and 2) a plot of the R value as a function of the sensors’ S/N 

demonstrated an extremely strong correlation of larger R 

values with sensors that had larger S/N ratios. This indicates 

that the e-nose measurements from different systems were 

strongly correlated but that the level of VOCs in the exhaled 

breath of non-smokers was at the lower limit of detectability 

by these systems. The relationship between sensors across 

both systems was the same, which is within error of repeated 

measures. Systems could be calibrated to record very similar 

values for the same sample. Comparisons of the two e-nose 

system responses are shown in Fig. 8.  

 
Fig. 8. 2D scatter plot of S23-S12: reproducibility test for two devices. Open 

circles and squares are the average sensor measurements for cancer subjects 

and the ever smokers. The solid triangles are the five repeat measures for each 

non-smoking subject measured by system 2 and the open triangle are the same 

subjects measured by system 1. 

D. Results evaluating the pre- and post-prandial analysis 

Fig. 9 shows the two-dimensional scatter plot of eight non-

smoker healthy samples as well as the control subjects. In the 

plot, each arrow line corresponds to the directional path from 

pre- to post-prandial measurements for each subject. Generally 

post-prandial samples recorded readings that were closer to 

the high-risk subjects, which all were analyzed in the post-

prandial state. It appears that the fasting– non-fasting state can 

affect some combinations of e-nose sensors (two states are 

significantly different for 37% of sensor combinations), 

however 99.94% of the combinations were not significant 

when corrected for multiple comparisons. 

 

Fig. 9. Plot evaluating the pre and postprandial effects for the combination of 

sensor 6 and 27 data. Each Arrow depicts the data variation from pre-prandial 

state to postprandial state. 

For almost all the sensor pairs that were found to have some 

ability to differentiate cancer subjects from high-risk smokers 

the change between the pre and post-prandial state subject 

measurements was in the opposite direction than that which 

separated the high-risk smokers from the cancer subjects. This 

suggests that some of the differences in VOCs between cancer 

subjects and high-risk normal subjects may be associated with 

metabolic activity associated with available energy. 
Essentially this observation is consistent with the energy 

model of cancer cellular metabolism. Specifically cancer cells 

are constantly in a metabolically challenged state (less energy 

and metabolites available than optimal due to their 

programming for uncontrolled growth). Normal or smoke 

damaged lung cells in a fasting individual are likely to be 

closer to this state than the cells in a non-fasting individual in 

which metabolites and energy are more readily available.  

 

E. Evaluation of Systematic Effects  

Fig. 10 shows scatter plots of all the data for the sensor 

combination (6 & 28) from volunteers (no patients) and 

humidified control air as a function of time. It shows the 

measurements obtained for 191 subjects (filled circles) as well 

as the humidified control air data (open boxes). As seen in the 

scatter plots, the e-nose system could detect subtle differences 

between medical air supply batches (differences in the open 

boxes for the eight air tanks); however these differences were 
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significantly smaller than subject-to-subject differences. 

 
 

(A) 

 
(B) 

Fig. 10. Assessment of systematic bias associated with different air tanks: X’
ij 

(for Sensor6-Sensor28 smell-prints) and Y’
ij measurements ordered by the time 

that they were made. 

In the scatter plots in Fig. 11 we can see the systematic bias 

introduced by the different sample bags on the recorded 

measurements. Fig. 11 shows this analysis for the X’
28 6 

measurement combination in which there is an obvious bag 

bias. A noticeable shift in both of X’
28 6 and Y’

28 6 

measurements was observed in Fig. 10 as well. Specifically, 

the data measured after the new batch of bags was installed 

(Bag II), deviates from the data collected using the first bag 

type (Bag I). We conclude that the new sampling bag type was 

the cause of the bias observed in the time trend. This bias was 

corrected by adjusting the collected data from both types of 

bags to have statistically the same average characteristics for 

the ever-smoker subject data (see Fig. 12). The corrected data, 

after removing the additive effects of bag type, were used for 

all the classification analyses. 

IV. DISCUSSION 

Profiling to detect biomarker patterns in exhaled breath is 

an emerging field in cancer research [8-11,34,35]. Multiple 

studies mainly evaluating e-nose application to distinguish 

lung cancer patients from control subjects have been  

 

Fig. 11. Effect assessment of the use of different air bags: X’
28,6 smell-prints 

ordered by the time that they were measured. 

 

 
    (A) 

 
    (B) 

Fig. 12. Correction of the Bias introduced by a change of air collection bags 

for eight sensor pair combinations. Figure A shows the subject data prior to 

the bias correction and figure B shows the same data after bias correction.  

conducted, however appropriate control group selection has 

not always been performed. Examples of this include the lack 

of current/former smoking controls, inappropriate control 

patients, and demographically mismatched test groups. The 

above referenced studies – many of which included evaluation 

of the same e-nose system we evaluate here – typically had 

control groups comprised of individuals with varied smoking 

statuses and other respiratory disorders or pulmonary diseases 

(e.g. COPD). A variety of enose sensor systems have been 

evaluated. One such is the 6 sensor system (E-nose Mk2 and 

Mk3, E-nose Pty., Ltd) described by Tran et al [11], for the 
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detection of lung cancer. In their study on 33 non-smokers, 11 

ex-smokers, 18 smokers, 11 controls with respiratory disorders 

and 16 lung cancers (stage not described) they found no 

significant differences in their breath measurements between 

the 4 non cancer groups. Further 3 of their measurement 

parameters were statistically different between the cancers and 

the controls and while they did not give any classification 

performance results visual inspection of their figures suggests 

at least a sensitivity of 56% with a specificity of 78%.  Peng at 

al[34] evaluated a sensor system based upon 9 chemiresistors 

assembled from gold nanoparticles and organic functionalities 

specifically designed to be sensitive to VOCs detected to be 

different between controls and lung cancer patients. They 

studied  56 healthy controls (39 nonsmokers, 17 smokers; 

average age 45y) and 40 late stage (3-4, smoking and average 

age unknown) lung cancer patients and found complete 

separation between the two groups for two PCA features and 

no differences with respect to sex, age or smoking status. 

The control-case classification performance reported here 

falls between these two studies. However the difference of the 

results between these 2 studies and with the work presented 

here highlights the difficulty with comparisons when different 

definitions between the control and cancer groups are used and 

when different technologies are evaluated.  

Many groups have used gas chromatography - mass 

spectrometry (GC-MS) to identify lung cancer VOCs. In a 

review of this VOC literature by Hakin et al[35] the possible 

mechanisms which give rise to these VOCs is discussed.  This 

review also noted that the variance in control groups in their 

reviewed clinical studies is an issue when comparing the 

results of studies. Interestingly this review suggested that 

induction of cytochrome p450 enzymes by smoking could lead 

to the acceleration of catabolism of oxidative stress products 

modifying associated VOCs in the breath. Interestingly our 

group has found that the expression of these genes can be 

reversibly and irreversibly modified [36] by smoking and may 

react differently between the sexes [37-39].  Other pathways 

who’s behavior could modify VOC in breath are carbohydrate 

metabolism, and the glycolysis/gluconeogenesis pathways. 

The known alterations in these pathways associated with 

cancer and their associated effects on VOCs[35] would be 

consistent with the pre-post prandial cancer non cancer results 

we observed. For this work, we have used well-matched 

patient groups according to demographic risk indicators: age, 

similar number of pack-years of smoking, and smoking status. 

We have investigated the ability of the e-nose to distinguish 

patients diagnosed with lung cancer from high-risk smokers 

with benign or no lesions. While earlier studies evaluated lung 

cancer patients that were typically older and possessed of 

longer smoking histories (compared to controls), we tested our 

hypothesis in a study cohort comprised of only current or 

former smokers with similar pack-year consumption histories 

and negligible age differences between cancer and control 

groups. Our data suggest that a subject’s sex can impact the 

delineation of that individual’s cancer (or non-cancer) status – 

and that the smoking status of the subject can make a large 

difference in the classification accuracy of e-nose data. Our 

results suggest that an e-nose system is likely to work better 

on ex-smokers than current smokers at least for lung 

Adenocarcinomas. It would appear that the changes associated 

with active smoking to some degree masks the changes in 

VOC associated with patients with cancer. Further it appears 

that these VOC changes are larger in males than in females. 

This is not totally surprising in that other studies have shown 

differences in the responses of males vs. females to the 

carcinogens in cigarette smoke [37-39]. The majority of 

analyzed cases were lung adenocarcinomas (Table II), a fact 

that could impact the utility of our findings to wider lung 

cancer populations. Also a larger cohort of lung cancer 

patients is needed to facilitate a more robust analysis of VOC 

changes to disease. For the e-nose system to be clinically 

useful, it must be possible to calibrate multiple systems to 

respond in the same manner (i.e. within the error of repeating 

a sample measurement on the same system). We were able to 

generate substantially equivalent results for the same subject 

VOCs measured on two systems through bias removal 

normalization. In theory this should make possible the 

translation of a classification function from one system to 

another without having to train the second system. However in 

practice, this needs to be demonstrated on a prospective 

sample population. In addition, we have assessed the potential 

systematic bias on the sensor array response, introduced by the 

alterations in the equipment (medical air tank and collection 

bag type) and found these to be systematic and correctable.  

In this study we demonstrated that the e-nose, when used as 

a screening tool, should be able to correctly differentiate high-

risk smokers/ex-smokers from subjects with lung cancer. This 

can be done with accuracy between 75%-85% (depending on 

the algorithm used). The concentration of the exhaled VOCs 

from the subjects in this work is at the edge of the sensitivity 

of the current e-nose system: a study involving a larger set of 

cancer patients using a more sensitive e-nose system is needed 

to improve the accuracy of our analysis and demonstrate the 

true screening potential of exhaled VOC readings, particularly 

across differences in subject sex and smoking status. 

V. CONCLUSION 

We have demonstrated the potential of e-nose technology to 

distinguish lung cancer patients from matched high-risk 

smokers, adding to the evidence that measurements of exhaled 

VOCs (as measured by an e-nose) can be used as a lung 

cancer screening tool. Smell-prints of high-risk smokers were 

significantly distinct from those diagnosed with lung cancer 

and these differences seem to depend to some degree on 

subject sex and smoking status. Further measurements on 

multiple devices can be demonstrated to be repeatable and 

reproducible. 
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