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Abstract
Background: Analyses of exhaled volatile organic compounds (VOCs) have shown 
promising results when distinguishing individuals with asthma. Currently, there are 
no biomarkers for uncontrolled asthma. Therefore, we aimed to assess, in a real-
life clinical setting, the ability of the exhaled VOC analysis, using an electronic nose 
(eNose), to identify individuals with uncontrolled asthma.
Methods: A cross-sectional study was conducted, and breath samples from 199 par-
ticipants (130 females, aged 6-78, 66% with asthma) were analysed using an eNose. A 
multivariate unsupervised cluster analysis, using the resistance data from 32 sensors, 
could distinguish three clusters of VOC patterns in the training and testing groups. 
Comparisons between the clusters were performed using the one-way ANOVA, 
Kruskal-Wallis and chi-squared tests.
Results: In the training set (n = 121), three different clusters covering asthma, lung 
function, symptoms in the previous 4 weeks and age were identified. The pairwise 
comparisons showed significant differences with respect to chest tightness during 
exercise, dyspnoea and gender. These findings were confirmed in the testing set 
(n  =  78) where the training model identified three clusters. The participants who 
reported fewer respiratory symptoms (dyspnoea and night-time awakenings) were 
grouped into one cluster, while the others comprised participants who showed simi-
lar poor control over symptoms with the distribution of the individuals with asthma 
being significantly different between them.
Conclusions: In a clinical setting, the analysis of the exhaled VOC profiles using an 
eNose could be used as a fast and noninvasive complementary assessment tool for 
the detection of uncontrolled asthma symptoms.
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1  | INTRODUC TION

Asthma affects more than 300 million people worldwide and is ex-
pected to increase by another 100 million by 2025.1 This is a chronic 
inflammatory disorder of the airways leading to hyperresponsive-
ness, reversible airway obstruction, mucus hyper-production and 
airway wall remodelling.2 Although the term asthma is used to de-
scribe a set of symptoms and variable airflow limitation mainly due 
to inflammation, the underlying mechanisms vary heterogeneously 
among patients leading to difficulties in its management and treat-
ment.3 Thus, it is critical to ensure the effective management of 
asthma based on an accurate assessment of the patient characteris-
tics and risk for serious outcomes.

Although the underlying biology remains poorly understood, 
a patient can be described in terms of the disease phenotypes. 
Generally, there is no correlation between these phenotypes and 

treatment responses, and different inflammatory pathways can ex-
plain why the therapies are only effective in a subset of patients, 
such as new biologics in severe eosinophilic asthma.4 Diagnostic 
biomarkers are required to appropriately endotype patients and 
enable more personalised therapy. Furthermore, there is a need 
to improve the biomarkers to enable their use in clinical practice, 
particularly for diagnosis and monitoring. Recently, exhaled breath 
analysis using an electronic nose (eNose) has been suggested as a 
useful tool for identifying children in need of inhaled corticosteroid 
therapy 5 and predicting steroid responsiveness.6 Electronic noses 
might be a promising tool for assessing asthma control and tailoring 
personalised treatment.

Breathomics can potentially provide additional information 
about a patient's condition, as gas chromatography coupled with 
mass spectrometry (GC-MS) and two-dimensional gas chroma-
tography time-of-flight mass spectrometry (GC × GC-ToFMS), and 

G R A P H I C A L  A B S T R A C T
In a population with asthma and suspicious of asthma (recruited from an outpatient allergy clinic), eNose-driven breath profiles distinguished 
three clusters, blindly to reference. Participants with less respiratory symptoms are grouped in one cluster while, in the others, participants 
show poor symptoms control but the distribution of subjects with asthma is different. eNose can screen individuals with uncontrolled 
asthma symptoms in a clinical setting.

F I G U R E  1   Flow diagram of clinical 
assessment of the participants. Full 
arrows: Procedures were performed 
during recruitment at clinical 
appointments. Dashed arrows: Procedures 
were performed after the clinical 
appointment, and specifically, eNose 
analysis was performed within 5 h after 
sampling. BMI, body mass index; EB, 
exhaled breath; FeNO, fractional exhaled 
nitric oxide; SPT, skin prick tests
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eNose have been previously used to distinguish between the ex-
haled breath of the asthmatics and healthy subjects.7,8 Changes in 
the exhaled volatile organic compounds (VOC) profile of the asth-
matics are mainly related to chronic airway inflammation and oxida-
tive stress, which lead to lipid peroxidation of the polyunsaturated 

fatty acids present in the cellular membranes.9 The resultant me-
tabolites are mainly hydrocarbons that are locally released into 
the airways or bloodstream and are further oxidised by the cyto-
chrome p450 enzymes before being excreted in the exhaled air.7,10-

12 Recently, a study found differences in the breath profiles of 
eosinophilic and neutrophilic asthma patients with respect to the 
levels of hexane and 1-propanol (2-10 ppm) and 2-hexanone, un-
decane, nonanal, 3-tetradecene and 1-pentadecene (0.4-10 ppm).13 
Unlike mass spectrometry, eNoses do not require preprocessing 
and chemical reference standards due to their ability to quickly 
analyse and recognise the VOC profiles at a low cost and indepen-
dent of a skilled operator, once training and calibration have been 
established.14 Moreover, the Cyranose 320® can detect VOC con-
centrations ranging from 100 ppb to 100 ppm.15 Thus, eNoses are 
likely to be used in clinical practice. However, there remain major 
challenges in breathomics, such as the lack of accuracy studies in 
the larger, representative and intent-to-treat populations.

Therefore, we aimed to blindly explore the differences in the 
exhaled VOC profiles using an eNose, in subjects with respiratory 
symptoms (with a medical diagnosis of asthma or suspicious of 
asthma) recruited from an intent-to-treat population during their ap-
pointments, either in a training or testing set, for the assessment of 
uncontrolled asthma.

2  | MATERIAL S AND METHODS

2.1 | Study design and participants

A cross-sectional study of the exhaled breath analysis using an 
eNose was performed in a training and testing set. We recruited 
nonpregnant subjects above 6 years of age who had an appoint-
ment (monitoring or first visit) at a tertiary care clinic for present-
ing asthma-like symptoms. We selected a broad age range as we 

F I G U R E  2   Flow of participants through the study

TA B L E  1   Participants’ characteristics

  Training set Testing set P value

Participants (n) 121 78  

Characteristics

Gender (male, n) 47 22 .12

Age (years)a 31.33 (6-78) 35.22 (7-63) .09

<12 y old (%) 13.22 14.10 .86

<18 y old (%) 28.10 21.79 .32

Weight (kg) 64.74 (±16.83) 67.38 (±18.03) .16

Height (m) 1.62 (±0.11) 1.61 (±0.11) .36

BMI (kg/m2) 24.45 (±5.26) 25.95 (±6.28) .06

z-scoreb 0.56 (±1.00) 0.38 (±1.16) .60

SPT (Positive, %) 83.04 79.41 .54

FeNO (ppb) 43.09 (±45.40) 39.93 (±42.58) .74

Lung function

FEV1 (%) 102.21 
(±15.60)

98.74 (±16.27) .13

FVC (%) 109.95 
(±13.31)

108.44 
(±14.41)

.50

FEV1/FVC (%) 79.67 (±9.17) 78.35 (±11.02) .36

FEF 25-75 (%) 78.08 (±29.69) 71.01 (±29.59) .15

PEF (%) 99.07 (±18.29) 97.21 (±18.15) .48

Positive BD (%) 21.49 25.64 .50

Medical diagnosis of

Asthma (%) 68.64 70.13 .83

Uncontrolled 
(%)

33.33 38.46 .55

Rhinitis (%) 87.93 81.82 .24

CS therapy (oral 
and inhaled)

64.66 64.47 .98

Smoker (%) 7.44 7.69 .95

Intake of food/
drinks 2 h prior 
test (%)

62.81 58.97 .59

Exercise 2 h prior 
test (%)

0.00 0.00 -

Inhaler 2 h prior 
test (%)

4.13 5.13 .74

Note: Data are presented as mean ± SD unless otherwise stated. 
Medical diagnosis of uncontrolled asthma was defined according to the 
prescription of higher corticosteroid doses.
Abbreviations: BD, bronchodilatation; BMI, body mass index; FEF, 
forced expiratory flow; FeNO, fractional exhaled of nitric oxide; FEV1, 
forced exhaled volume in the first second; FVC, forced vital capacity; 
PEF, peak expiratory flow.
aAge is presented as mean (minimum – maximum). 
bz-score was calculated for girls and boys with ages between 6 and 19 y. 



4  |     FARRAIA et al.

aimed to identify a general signal in a symptomatic population. The 
eligible participants were randomly allocated to the training or 
testing set, and the clinical assessments included exhaled breath 
collection and eNose analysis, exhaled nitric oxide measurement, 
lung function and skin prick tests (SPT). Additionally, all partici-
pants completed a questionnaire. The medical diagnosis of asthma 
and allergic rhinitis was subsequently established by a physician 
according to the guidelines,2 and the medical definition of uncon-
trolled asthma was based on the requirement to increase the dos-
age of corticosteroid (CS) prescription during the appointment. 

The medical doctor was aware of unwitting nonadherence, and 
every patient, with asthma or on asthma medication, had inhala-
tion techniques assessed, and environmental measurements and 
anti-smoking information were provided. In a real-life clinical set-
ting, the medical decision to step up or step down medication 
takes into consideration the aforementioned outcomes. Thus, we 
decided to use the “medical uncontrolled asthma” criterion sup-
ported by the doctors’ decision, without restricting the analysis 
only to the symptoms scores. The flow of the clinical assessment 
is presented in Figure 1.

  Cluster T1 Cluster T2 Cluster T3 P value

Subjects N 65 22 34  

Characteristics

Sex (male %) 32.31 59.09 38.24 .08

Age (years) 33.48 (±17.26) 26.23 (±14.10) 30.53 (±16.00) .18

<12 y old (%) 6.15 27.27 17.65 .03

<18 y old (%) 23.08 36.36 32.35 .40

Weight (kg) 65.54 (±14.77) 65.64 (±21.03) 62.62 (±17.87) .73

Height (m) 1.63 (±0.10) 1.62 (±0.13) 1.60 (±0.12) .67

BMI (kg/m2) 24.60 (±4.96) 24.64 (±6.35) 24.05 (±5.20) .93

z-scorea 0.39 (±0.97) 0.99 (±0.98) 0.45 (±1.06) .38

Medical diagnosis of

Asthma (%) 75.00 76.19 51.52 .04

Uncontrolled (%) 31.25 26.67 46.67 .45

Rhinitis (%) 90.48 85.00 84.85 .66

FeNO (ppb) 48.02 (±51.37) 44.62 (±51.08) 32.66 (±23.61) .54

SPT (%) 80.33 94.74 81.25 .33

Lung function: Baseline

FEV1 (%) 103.91 (±15.36) 103.77 (±16.52) 97.97 (±15.08) .17

FEV1 (L) 3.14 (±0.97) 3.22 (±1.02) 2.88 (±0.92) .54

FVC (%) 111.06 (±13.05) 112.41 (±14.20) 106.24 (±12.82) .15

FEV1/FVC (%) 80.77 (±9.58) 78.82 (±9.80) 78.13 (±7.85) .36

FEF 25-75 (%) 81.62 (±30.61) 79.09 (±31.38) 70.68 (±26.10) .28

PEF (%) 102.22 (±17.85) 100.64 (±19.58) 92.03 (±16.83) .03

FEV1 reversibility (L) 0.20 (±0.23) 0.14 (±0.13) 0.16 (±0.15) .56

FEV1 reversibility (%) 6.32 (±6.63) 4.45 (±4.19) 6.41 (±6.82) 53

Positive BD (%) 26.15 9.09 20.59 .24

CS therapy (oral and 
inhaled)

69.35 71.43 51.52 .17

Smoker (%) 9.23 4.55 5.88 .71

Intake of food/drinks 
2 h prior test (%)

61.54 40.91 79.41 .01

Inhaler 2 h prior test 
(%)

7.69 0.00 0.00 .11

Note: Data are presented as mean ± SD. Significant differences are indicated in bold.
Abbreviations: BD, bronchodilation; BMI, body mass index; CS, corticosteroid; FeNO, fractional 
exhaled of nitric oxide; FEV1, forced expiratory volume in the first second; FVC, forced vital 
capacity; PEF, peak expiratory flow; BD, bronchodilation test.
az-score was calculated for girls and boys with ages between 6 and 19 y old. 

TA B L E  2   Differences between the 
hierarchical model clusters according to 
participants’ clinical characteristics and 
lung function parameters (training cohort)



     |  5FARRAIA et al.

This study was approved by the University Ethical Committee, 
and written consent was obtained from all the participants before 
any procedure.

2.2 | Assessments

The height and weight of all the participants were measured. The 
body mass index (BMI) was calculated stratified according to the 
World Health Organization (WHO) guidelines.16 Additionally, z-
scores were calculated for the 6- to 19-year-old participants accord-
ing to the WHO references, using the AnthroPlus software (WHO, 
Geneva).17,18

Exhaled breath collection was performed as described by 
Dragonieri et al19 and the European Respiratory Society.20 
Additionally, we evaluated the breath samples collected in ten 
healthy subjects after 1, 2 and 5 minutes of tidal breathing through 
a VOC filter to determine the optimal time required to eliminate 
the environmental influence, using the Cyranose 320® (Sensigent). 
To identify the differences between the three sample classes, the 
breath-prints were analysed using the software on-board the eNose 
(PC nose® software, Sensigent). The samples collected after 2 min-
utes exhibited a low Mahalanobis distance (0.474) as compared to 
the 5  minutes samples. Thus, the participants were asked to pro-
vide tidal breathing via a two-way nonrebreathing valve attached to 
a VOC filter (Honeywell A2, North Safety) for 2 minutes, with the 
nose clipped, to eliminate the effect of the environmental VOCs. 
Subsequently, the participants performed a maximum forced expira-
tory manoeuvre into a 1L Tedlar bag (SKC, Inc) attached to the expi-
ratory port of the nonrebreathing valve. The exhaled breath samples 
were evaluated using Cyranose 320® within 5 hours.

Airway inflammation was assessed by measuring the frac-
tional exhaled nitric oxide (FeNO) levels using the NObreath anal-
yser (Bedfont Scientific Ltd.). The results were expressed in parts 
per billion and stratified according to the guidelines.21 Spirometry 
and bronchodilation challenge were performed before and 15 min-
utes after the inhalation of 400 μg of salbutamol, according to the 
American Thoracic Society/European Respiratory Society (ATS/
ERS) guidelines.22 Allergic sensitisation was measured using SPT. 
The patients were asked to complete a questionnaire to report any 
respiratory symptoms in the last 4 weeks, medication taken in the 
last 48 hours, smoking habits and other diseases. The reported re-
spiratory symptoms included blocked and/or runny nose, sneezing, 
dyspnoea, chest wheezing, chest tightness upon physical exercise, 
tiredness while performing daily tasks due to respiratory diseases, 
waking up during the night and increased usage of medicines be-
cause of respiratory diseases. In adults, the frequency of the symp-
toms was also stratified (never, up to 2 days per week, more than 
2 days per week and almost every day).

In total, 207 patients were invited to participate and 199 (train-
ing, n = 121; testing, n = 78) were included in the analysis. The flow 
of participants and their characteristics are summarised in Figure 2 
and Table 1, respectively.

2.3 | Data analysis

Resistance values from 32 sensors (variables) of the Cyranose 
320® (Sensigent) corresponding to each of the 199 samples (ob-
servations) were imported as a DataFrame object into the RStudio 
software v3.4.2 (R Foundation). The data were scaled to stand-
ardise the unit variance (mean = 0, standard deviation = 1). First, 
cluster analysis was performed on the training data using Ward's 
minimum variance method to agglomerate the data values accord-
ing to the Euclidean distances. Hopkins’ index was calculated to 
assess the clustering tendency, retrieving a value of 0.92. The 
data were considered as clusterable. Then, to assess the optimal 
number of clusters, the totals within the sum of squares and av-
erage silhouette width methods were calculated to confirm/ob-
tain an optimal cluster score for k = 3. The internal validation and 
cluster stability methods were applied to the “hierarchic,” “PAM” 
(partitioning around medoids) and “k-means” algorithms, with the 
best scores achieved for the hierarchical model (Table S1). Thus, 
the training set population was divided into three clusters (T1, T2 
and T3) based on the hierarchical clustering method (threshold for 
3-class cut-off: 0.0547). Additionally, we calculated the similarity 
between the clustering methods using the Rand index. Briefly, in 
cluster analysis, the objects from the same group (or cluster) are 
more similar to each other than those in the other groups.23 In the 
k-means method, each cluster is represented by the mean of the 
data points belonging to the cluster, as opposed to PAM cluster-
ing, where each cluster is represented by one of the objects in 
the cluster. Hierarchical clustering is an alternative method as it 
groups the objects based on their similarity. The training model 
was used to classify the testing cohort (V1, V2 and V3 clusters). 
Comparisons between the clusters were performed using the 
ANOVA, Kruskal-Wallis and chi-square tests in the SPSS® statisti-
cal package software v25.0 (IBM). Pairwise comparisons between 
the clusters were also performed. A P value < .05 was considered 
statistically significant.

3  | RESULTS

Unsupervised hierarchical clustering in the training set resulted 
in three different clusters covering asthma (P = .04), lung function 
(P =  .03), age (P =  .03) and intake of food or drinks 2 hours prior 
to breath sampling (P = .01) (Tables 2 and 3) (Figure S1, Table S3). 
Clustering similarity between the hierarchic and k-means models 
was 0.80 and 0.54 between the hierarchic and pam models, thus 
strengthening the clusters obtained (Table S2). Briefly, cluster 3 
had less participants with asthma but presented a poorer lung 
function.

Pairwise comparisons between the clusters showed further 
significant differences, such as chest tightness during exercise (be-
tween clusters T2 and T3, and clusters T2 and T1), dyspnoea (clus-
ters T2 and T3), asthma (clusters T3 and T1) and peak expiratory 
flow (PEF) (clusters T3 and T1). Thus, cluster T3 was characterised 
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TA B L E  3   Differences between the hierarchical model clusters according to asthma-like symptoms (training cohort)

Symptoms (adults) Cluster T1 Cluster T2 Cluster T3 P value

Young and adults (age: 13-78)

Stuffy nose (%) 78.69 87.50 82.14 .71

Stuffy nose (frequency, mean: 0-3) 1.54 (±1.10) 1.56 (±1.03) 1.79 (±1.03) .59

Sneezing (%) 91.80 93.75 96.43 .72

Sneezing (frequency, mean: 0-3) 1.77 (±0.92) 1.69 (±0.95) 2.00 (±0.98) .49

Runny nose (%) 77.05 81.25 82.14 .84

Runny nose (frequency, mean: 0-3) 1.31 (±1.03) 1.31 (±0.87) 1.54 (±1.07) .63

Shortness of breath/dyspnoea (%) 50.82 37.50 64.29 .22

Shortness of breath/dyspnoea (frequency, mean: 0-3) 0.80 (±0.96) 0.63 (±1.03) 1.11 (±1.03) .18

High pitch sound in chest/wheezing (%) 50.82 43.75 53.57 .82

High pitch sound in chest/wheezing (frequency, mean: 0-3) 0.95 (±1.13) 0.88 (±1.15) 0.89 (±1.03) .95

Chest tightness during exercise (%) 52.46 25.00 57.14 .10

Chest tightness during exercise (frequency, mean: 0-3) 0.98 (±1.14) 0.37 (±0.81) 1.00 (±1.09) .09

Tiredness/difficulty in doing daily tasks (%) 57.38 56.25 57.14 .99

Tiredness/difficulty in doing daily tasks (frequency, mean: 0-3) 1.13 (±1.18) 0.87 (±1.03) 1.00 (±1.02) .78

Woke up in the middle of the night (%) 45.90 43.75 64.29 .23

Woke up in the middle of the night (frequency, mean: 0-3) 0.85 (±1.09) 0.75 (±1.07) 1.14 (±1.08) .30

Increased the use of medicines because allergic respiratory 
diseases (%)

48.89 46.15 52.17 .94

Increased the use of medicines because allergic respiratory 
diseases (frequency, mean: 0-2)

0.73 (±0.84) 0.69 (±0.86) 0.70 (±0.77) .99

Children (age: 6-12)

Stuffy nose (%) 25.00 33.33 83.33 .12

Sneezing (%) 25.00 66.67 33.33 .35

Runny nose (%) 25.00 66.67 66.67 .35

Shortness of breath/dyspnoea (%) 50.00 16.67 33.33 .53

High pitch sound in chest/wheezing (%) 50.00 16.67 16.67 .41

Cough (%) 75.00 66.67 83.33 .80

Chest tightness during exercise (%) 50.00 50.00 50.00 1.00

Tiredness/difficulty in doing daily tasks (%) 50.00 50.00 33.33 .81

Woke up in the middle of the night (%) 0.00 16.67 33.33 .41

Had to miss school (%) 0.00 0.00 16.67 .41

Increased the use of medicines because allergic respiratory 
diseases (%)

0.00 16.67 33.33 .41

Children, young and adults (age: 6-78)

Stuffy nose (%) 75.38 72.73 82.35 .65

Sneezing (%) 87.69 86.36 85.29 .94

Runny nose (%) 73.85 77.27 79.41 .82

Shortness of breath/dyspnoea (%) 50.77 31.82 58.82 .14

High pitch sound in chest/wheezing (%) 50.77 36.36 47.06 .50

Chest tightness during exercise (%) 52.31 31.82 55.88 .17

Tiredness/difficulty in doing daily tasks (%) 56.92 54.55 52.94 .93

Woke up in the middle of the night (%) 43.08 36.36 58.82 .19

Increased the use of medicines because allergic respiratory 
diseases (%)

44.90 36.84 48.28 .73

Note: Symptoms in last 4 wks were auto-reported in a questionnaire. In young and adults, the frequency of symptoms was additionally questioned 
(0 = never; 1 = up to 2 d in a week; 2 = more than 2 d in a week; 3 = almost every day). The frequency of symptoms was analysed as a numerical 
variable. No significant differences were found among children (6-12 y old).
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by fewer asthmatics, although this cluster had more participants 
with asthma-like symptoms, such as dyspnoea and chest tightness 
during exercise, as compared to cluster T2, but was similar to cluster 
T1. Cluster T3 participants also presented a poorer lung function. 
Participants from cluster T2, composed predominantly of males 
and children under 12 years of age, presented a lower prevalence 
of respiratory symptoms. Cluster T1 included participants with un-
controlled asthma-like symptoms similar to cluster T3. The charac-
teristics of the three clusters (training set) are presented in Tables 
2-4 and in the (Tables S3 and S4).

No differences were found between the training and testing 
populations (Table 1). The breath-prints from the testing set (V1, V2 
and V3) showed no significant differences with respect to asthma, 
PEF and symptoms. However, the trends that included fewer asth-
matics in cluster V3 and participants with less respiratory symptoms 
in cluster V2 were observed. The pairwise cluster analysis showed 
that cluster V2 included less participants with dyspnoea as com-
pared to cluster V1 (P = .03) and less night-time awakenings due to 
respiratory diseases (P = .03) (Tables S5-S8).

4  | DISCUSSION

Our findings support the use of an eNose for evaluating individu-
als with asthma-like symptoms. In this study, we showed that in 

patients with respiratory complaints, employing an eNose to ana-
lyse the breath-prints distinguished three clusters of subjects dif-
fering in the prevalence of asthma, lung function, symptoms in the 
previous 4 weeks, age and intake of food/drinks 2 hours prior to 
breath sampling. The participants with less respiratory symptoms 
were grouped into one cluster, while in the others, participants 
showed similar poor control over the symptoms, but with a sig-
nificant difference in the distribution of the subjects with asthma. 
The testing cohort showed similar clusters regardless of no signifi-
cant differences in the distribution of the asthmatics. Considered 
together, our observations support the ability of an eNose to de-
tect the individuals with poorly controlled asthma-like symptoms. 
This is an important finding as the identification of a specific ex-
haled breath pattern using an eNose in a reproducible, cheap and 
noninvasive manner in a clinic setting might assist in the precise 
and personalised management of asthma.

Our study has a few limitations. First, its cross-sectional design 
did not allow us to establish a causal relationship between the symp-
toms and exhaled VOC profile. Cohort studies are required to under-
stand both the determinants and the changes in the exhaled VOC 
profiles. We also recognise that a third group of patients (validation 
group) would be essential to strengthen our results. When we divided 
our population into three subgroups (Training–70%, Testing–20%, 
Validation–10%), we observed similar results in the training and 
testing populations, but not in the validation group. This last group 

Respiratory symptoms T1/T2 T1/T3 T2/T3

Young and adults (age: 13-78)

Shortness of breath/dyspnoea, % 0.34 0.16 0.09

Shortness of breath/dyspnoea 
(frequency, mean: 0-3)

0.37 0.16 0.09

High pitch sound in chest/wheezing, % 0.62 0.81 0.53

High pitch sound in chest/wheezing 
(frequency, mean: 0-3)

0.74 0.96 0.80

Chest tightness during exercise, % 0.050 0.68 0.04

Chest tightness during exercise 
(frequency, mean: 0-3)

0.04 0.84 0.04

Tiredness/difficulty in doing daily tasks, 
%

0.94 0.98 0.95

Tiredness/difficulty in doing daily tasks 
(frequency, mean: 0-3)

0.53 0.70 0.68

Woke up in the middle of the night, % 0.88 0.11 0.19

Woke up in the middle of the night 
(frequency, mean: 0-3)

0.78 0.17 0.20

Children, young and adults (age: 6-78)

Shortness of breath/dyspnoea, % 0.12 0.45 0.05

High pitch sound in chest/wheezing, % 0.24 0.73 0.43

Chest tightness during exercise, % 0.10 0.74 0.08

Tiredness/difficulty in doing daily tasks, 
%

0.85 0.71 0.91

Woke up in the middle of the night, % 0.58 0.14 0.10

Note: T1: cluster T1; T2: cluster T2; T3: cluster T3. Significant differences are indicated in bold.

TA B L E  4   Pairwise differences (P value) 
between the hierarchical model clusters 
according to asthma-related symptoms 
(training cohort)
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contained few participants, which made it difficult to observe statis-
tically significant differences between the clusters. Second, we did 
not have the opportunity to assess other biomarkers, such as blood or 
sputum eosinophils. We recognise that other variables can contribute 
to differences in the breath-prints, particularly those related to in-
flammation, as changes in the exhaled breath of patients with distinct 
inflammatory profiles have been reported.24,25 Additionally, we did 
not collect data on the dosage of CS prescribed to each patient with 
asthma. As this does not preclude adhesion to treatment, in our study, 
we reported an increase in the CS dosage following the doctor's ex-
amination to characterise patients with “uncontrolled asthma” based 
on a medical decision. Third, reproducibility using a different device 
was not assessed. Nevertheless, the reproducibility of the Cyranose 
320® has already been tested in healthy controls (Cohen's kapa co-
efficient ranged from 0.75 to 0.91).26 Moreover, sampling methods 
for collecting the exhaled VOCs are currently being researched and, 
despite ERS recommendations, a standardised methodology does not 
exist.20 As specified in the ERS technical standard on breath analy-
sis, despite the effect of the environmental VOCs, there are other 
important considerations, such as the type of sampling, sampling 
duration, effect of expiratory flow, types of collecting materials and 
the effects of humidity, food, medications, exercise, smoking and co-
morbidities. In this study, it was not possible to control the expiratory 
flow, medication, smoking, comorbidities and intake of food before 
sampling, which can affect the breath-prints and contribute to over-
fitting of the results.15,26-28 The expiratory flow rate can affect the 
concentration of the exhaled VOCs and, consequently, the sensor re-
sponse.29 We did not find statistically significant differences between 
the clusters with respect to the medication taken, comorbidities and 
smoking, although other studies have reported differences indicat-
ing that these factors are responsible for metabolic alterations that 
might be reflected in the composition of the exhaled VOCs.26-28 As 
the participants were randomly assigned in this study, we could not 
restrict the intake of food/drinks 2 hours before sampling. As we ob-
served differences with respect to this variable, we suggest that this 
requirement be fulfilled in future studies to reduce overfitting of the 
results. Moreover, pregnant women were excluded due to the accel-
erated metabolism and immune and hormonal alterations observed 
during pregnancy, which might influence the exhaled VOCs.30 The 
sex and age also affect the breath-prints; however, we did not stratify 
the data with respect to these variables, as the main aim was to iden-
tify differences in the breath-prints according to the demographic 
data, symptoms and lung function. Furthermore, we standardised the 
sampling using a VOC filter, fixed volume collection bag composed 
of an inert and reusable material and single expiratory manoeuvre 
during collection. Methods that remove the effects of humidity are 
not available. As suggested in the ERS technical standard on breath 
analysis, we performed a supplementary analysis that involved elimi-
nating the water-sensitive sensors of the eNose (sensors 5, 6, 23, and 
31) to obtain similar clusters with similar characteristics. Finally, the 
testing population should be larger to confirm the results obtained in 
the training set. The results of the training and testing populations did 
not completely match, despite the similarities observed.

Regardless of the aforementioned limitations, this study has im-
portant strengths. This is one of the first studies to employ an eNose 
to analyse breath samples in a population with various respiratory 
symptoms, recruited during appointments, in a clinical setting. A re-
cent study followed a similar approach to evaluate the exhaled breath 
of COPD and asthma patients, using a different eNose.25 Cluster 
analysis showed five combined clusters of chronic airway disease and 
asthma that were not determined according to the diagnostic label, 
but rather by the clinical and inflammatory characteristics. In another 
study conducted in subjects with severe asthma, differences in the 
exhaled breath related to inflammation and CS use were found.31 
These findings diminish the importance of a diagnostic label and 
highlight approaches based on the clinical characteristics and treat-
able traits to understand the condition of each patient. According to 
the adopted study design, all participants with respiratory symptoms 
were selected, showing the generalisation of our results and poten-
tial clinical application despite comorbidities, smoking, sex, age and 
intake of CS or food 2 hours prior to sampling. Additionally, we eval-
uated the respiratory symptoms reported by the participants. The 
breath-prints were analysed blindly with respect to the reference 
to better explore the differences found in the exhaled breath of the 
participants recruited in a real-life clinical setting. Moreover, the rand 
index results strengthened the outcomes of our clusters. The use of 
an independent testing set confirmed the results from the training 
set despite a few incomplete matches, which could be attributed to 
the sample size, as we observed the same trend in the cluster char-
acteristics for both populations. Furthermore, the elimination of the 
environmental VOCs during the acquisition of the exhaled air was 
extremely important, as previous studies have demonstrated good 
accuracy results using this methodology.19,26,32-37

Previous studies have shown that breathomics can identify asth-
matics with uncontrolled symptoms and in need of inhaled corticoste-
roid treatment.6,37,38 The exhaled breath of patients with controlled 
and uncontrolled asthma was well discriminated using a model of 
thirteen compounds (CVV = 80%).38 Later, the Cyranose 320® could 
distinguish uncontrolled patients from both the healthy controls and 
asthmatics with good control of the disease (area under the curve, 
AUC 0.814).6 The criteria used to define uncontrolled asthma focused 
on the significant changes in the PEF, increased use of reliever medi-
cines exceeding the average daily use and awakenings due to asthma 
more than two times a week. Recently, the exhaled breath of patients 
with asthma was evaluated in a longitudinal study using two differ-
ent approaches (GC-MS and eNose technology).37 Both techniques 
distinguished the breath-prints collected at different times (baseline, 
loss of control and recovery). The eNose achieved a higher accuracy 
than the GC-MS (86%-95% and 68%-77%, respectively). The partici-
pants exhibiting a poor control over the asthma-like symptoms exhib-
ited a specific smell-print, possibly due to inflammation and oxidative 
stress, leading to lipid peroxidation and excretion of the VOCs in 
the exhaled breath.39 These studies corroborate our results, as the 
main discriminative VOCs were alkanes, methyl alkanes and alcohols. 
Additionally, more than 80% of the participants presented a diagnosis 
of allergic rhinitis, which might have contributed to the presence of 
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VOCs derived from oxidative stress and, consequently, lipid perox-
idation.40 To our knowledge, there have been no studies that have 
reported the type of VOCs present in the exhaled breath of patients 
with rhinitis; however, breath-prints analysed using an eNose could 
differentiate the patients from the controls.41 Our study stands out 
from the previous ones because the eNose was tested in a clinical 
setting, in the presence of confounders and comorbidities potentially 
responsible for the asthma-like symptoms.

Our study is the first to test an eNose exclusively in a real clinical 
setting and included participants with asthma and those suspicious 
of asthma. The eNose could differentiate the uncontrolled asth-
ma-like symptoms in a clinical setting, indicating that the exhaled 
breath exhibits differences due to inflammation of the airways, de-
spite the presence of confounders and comorbidities. Other studies 
have suggested that this technology can differentiate inflammatory 
markers (eosinophilia and neutrophilia). This study extends the re-
sults of the other research groups who observed differences in the 
exhaled breath of asthmatics using GC-MS and eNose technology, 
particularly in those with uncontrolled symptoms. In practice, these 
results are important because this fast and noninvasive approach 
can screen individuals with uncontrolled asthma symptoms, thus 
leading to faster monitoring, and enhanced management and treat-
ment. It would be interesting to follow-up with patients in a longitu-
dinal study and evaluate the effect of therapy on the breath-prints 
and symptoms. The GC-MS studies should be continuously per-
formed to provide information on the altered pathways. In conclu-
sion, our study encourages the design of further surveys for testing 
the eNose in clinical settings.
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