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1 | INTRODUCTION

Fish are one of the most widely consumed and interna-
tionally traded foods in the world today (Tveteras et al.,
2019) and are a significant part of our diet as a rich source
of premium protein, unsaturated fatty acids, vitamins,
and minerals (Wu et al., 2019). The U.S. Food and Drug

| Zachary Ellsworth! | Betsy Jean Yakes®

Abstract: This study evaluated an electronic-nose (e-nose) sensor in com-
bination with support vector machine (SVM) modeling for predicting the
decomposition state of four types of fish fillets: mahi-mahi, croaker, red snapper,
and weakfish. The National Seafood Sensory Expert scored fillets were thawed,
10-g portions were weighed into glass jars which were then sealed, and the jars
were held at approximately 30°C to allow volatile components to be trapped
and available for analysis. The measurement of the sample vial headspace was
performed with an e-nose device consisting of nanocomposite, metal oxide
semiconductor (MOS), electrochemical, and photoionization sensors. Classifi-
cation models were then trained based on the sensory grade of each fillet, and
the e-nose companion chemometric software identified that eight MOS were
the most informative for determining a sensory pass from sensory fail sample.
For SVM, the cross-validation (CV) correct classification rates for mahi-mahi,
croaker, red snapper, and weakfish were 100%, 100%, 97%, and 97%, respectively.
When the SVM prediction performances of the eight MOS were evaluated
using a calibration-independent test set of samples, correct classification rates
of 93-100% were observed. Based on these results, the e-nose measurements
coupled with SVM models were found to be potentially promising for predicting
the spoilage of these four fish species.

Practical Application: This report describes the application of an electronic-
nose sensor as a potential rapid and low-cost screening method for fish spoilage.
It could provide regulators and stakeholders with a practical tool to rapidly and
accurately assess fish decomposition.
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Administration (FDA) has the primary federal responsibil-
ity of seafood safety in the United States (U.S. FDA, 2020),
which includes oversight of more than 90% of seafood
(by volume) that is imported. Fish is a highly perishable
food commodity (Adedeji et al., 2012; Vajdi et al., 2019)
with decomposition caused by bacterial decay, enzymatic
degradation, and lipid oxidation (Hammond et al., 2002).
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Hence, development of techniques for evaluating fresh-
ness attributes of fish is essential (Wu et al., 2019).

For evaluation of seafood freshness, there have been sev-
eral techniques and methods developed with organoleptic
sensory evaluation, the gold-standard for regulation of fish
freshness (Cheng et al., 2013; Codex Alimentarius Com-
mission, 1999; Wu et al., 2019). Sensory analysis is fast, sim-
ple, and accurate; however, this method requires exten-
sive training to avoid potential subjectivity in analysis
(Du et al., 2001; Self et al., 2019). With regard to analyt-
ical methods to determine fish spoilage, various volatile
compound extraction methods (e.g., solid phase microex-
traction) combined with chromatographic separation and
detection (e.g., GC and HPLC with MS) have yielded accu-
rate results, but these procedures can be laborious, use sol-
vents, require highly skilled operators, and are mostly lim-
ited to analytical laboratories (Altieri et al., 2016; Bai et al.,
2019; Lee et al., 2018; Lv et al., 2018; Wu et al., 2019). There-
fore, there is a need to develop new technologies that can
allow for the rapid, simple classification of seafood quality
and freshness.

The composition and concentrations of volatiles pro-
duced by decomposition due to microbial growth and oxi-
dation of the fish areindicative of the stage of spoilage. One
method to detect these volatile compounds is electronic-
nose (e-nose) sensor technology. An e-nose instrument
commonly consists of an array of sensors that responds
to a complex volatile profile with each sensor having a
specific affinity toward a chemical (Lee et al., 2018) or, in
many cases, individual sensors having overlapping sensi-
tivity for a common class of volatile compounds which
then results in a characteristic signature/pattern for each
sample (Amari et al., 2006; Di Natale et al., 2001). These
sensors have a rapid response to reacting compounds and
can be reusable after a short recovery period. Due to these
attributes, this technology has been investigated for fresh-
ness and authenticity assessment in a wide range of food
products such as fruits, vegetables, olive oil, and seafood
(Adak & Yumusak, 2016; Buratti et al., 2018; Grassi et al.,
2019; Kodogiannis, 2017; Li et al., 2016; Shao et al., 2018;
Zhiyi et al., 2017; Zhou et al., 2017). A number of chemo-
metric models have been developed for fish spoilage clas-
sification including those of Alaskan pink salmon (Chan-
tarachoti et al., 2006), sardines (Amari et al., 2006), tilapia
(Shi et al., 2018), cod (Di Natale et al., 2001), and croaker
(Zheng et al., 2016; Zhiyi et al., 2017). The pattern recog-
nition techniques for prediction in these studies included
the nonlinear methods of artificial neural network (ANN),
support vector machine (SVM), k-nearest neighbor (KNN)
(Hasan et al., 2012), and probabilistic neural networks
(PNN) (Cheng et al., 2015), as well as the linear method
of partial least squares discriminant analysis (PLS-DA)
(Grassi et al., 2019).
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Despite these successes, e-nose technology has yet to be
fully vetted and deployed for seafood decomposition anal-
ysis. This is in part due to e-nose technology not allow-
ing compound identification and having a higher detec-
tion limit compared to chromatographic methods com-
bined with mass spectrometric detection (Kodogiannis,
2017). Further, e-nose measurement reliability depends on
several key factors such as efficient sampling, appropri-
ate selection of sensing elements, optimal data acquisi-
tion, proper pre-processing, and suitable pattern recogni-
tion modeling (Vajdi et al., 2019). In regard to this, this
study seeks to train the classification models based on sen-
sory evaluations performed by U.S. FDA National Seafood
Sensory Experts (NSSEs). This allows the chemometric
method to generate results which are directly comparable
to sensory analysis thus, potentially serving as a more fit-
ting and accurate companion tool. Also, use of appropri-
ate statistical methods to identify informative sensors that
are important for a better discrimination of samples is vital
prior to the development of classification models. In this
case, the e-nose companion chemometric software has a
built-in function to identify the informative sensors for this
purpose allowing for robust identification of appropriate
Sensors.

In this study, we evaluated an e-nose sensor, MSEM
160, which is designed for sampling and detection of
odors, volatile organic carbons (VOC), and other airborne
chemicals. This instrument has a small footprint that
could allow the device to be easily portable and deployable
for seafood decomposition analysis. This instrument is
composed of specific gas sensors for hydrogen sulfide,
ammonia, and hydrocarbons, as well as an array of sensors
for VOC and other odor causing compounds. This system
was evaluated for the classification of fish spoilage in less
time and at reduced costs relative to classical analytical
techniques. The possibility of classifying fish spoilage
using this instrument was evaluated by collecting fish
sample data from four different fish types and then
performing SVM modeling. The chemometric method
was trained using the sensory evaluation scores from
NSSEs for fish samples collected from multiple areas of
the world and fishing locations. Based on the results, the
e-nose-based method was found to be a promising tool in
predicting the spoilage of these four fish species.

2 | MATERIALS AND METHODS
2.1 | Fish samples and sensory analysis
Mahi-mahi (Coryphaena hippurus), croaker (Micropogo-

nias furnieri), red snapper (Lutjanus species), and weak-
fish (Macrodon ancylodon) were evaluated from two
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countries during August and September of 2018 by U.S.
FDA NSSEs. Croaker, red snapper, and weakfish were col-
lected from Guyana, and mahi-mahi was collected from
Ecuador. Harvest was performed by various vessels in these
regions and then the fish were brought to central process-
ing facilities/warehouses in the individual countries where
the fish were gutted by hand. On-site NSSEs then per-
formed initial evaluation and controlled decomposition.
Natural diversity due to being wild-caught samples led to
variability in the age, weight, and length of the samples.

NSSEs are highly trained seafood sensory analysts that
undergo the FDA training regime including sensory course
participation, training sample set evaluation, and testing.
Candidates then serve alongside NSSE experts, prepar-
ing training sample sets, providing leadership for the pro-
gram, training lab analysts, participating in inspections,
and other activities relevant to their work, until full qualifi-
cation is reached. To achieve qualification and NSSE status
after their years of rigorous training, candidates must sub-
mit a package that is reviewed by current NSSEs and the
associated FDA Offices/Centers. Only upon all reviewers
agreeing that the candidate is ready and qualified to be an
NSSE is the candidate promoted.

In this study, these expert NSSEs identified the fish
and performed sensory evaluation and controlled seafood
decomposition on-site to create increment-based, scored
seafood samples for analytical analysis. Based on sensory
assessments by a single NSSE per increment in a set and
using established protocols, a sensory score was given to
each sample that was related to the intensity and type
of the odor. Sensory scores are on a standard 100-point
scale where 0 represents the highest possible quality and
100 represents the greatest degree of decomposition. In
this scale, seafood is given either a sensory pass or a sen-
sory fail (i.e., 0-49 scores pass while 51-100 scores fail;
(Self et al., 2019)). In this manner, depending on a num-
ber range on the 100-point scale, samples were assigned
to seven different sensory increments (SIs) from 1 to 7. SI
values of 1-4 consisted of samples that passed the sensory
test with increment 4 being the borderline pass, and SI
values of 5-7 consisted of those that failed the test with
increment 7 having the most highly decomposed samples.
For preparing these increments, freshly caught and gutted
fish were first evaluated and given a sensory score based
on what was determined for the “freshest” product. These
samples then were given the SI 1 designation with addi-
tional SIvalues possible due to natural decomposition from
transport and preparation. The remaining fish were then
separated into different totes containing ice, representing
future SIvalues, in order to have controlled decomposition.
The NSSEs checked the totes every few hours to monitor
the decomposition progress. If needed, additional ice was
added or ice was removed to control the decomposition

process. This process was continued until there were seven
increments of decomposition, with fish samples removed
at each increment level along the way. Table 1 shows the SI
value and associated sensory scores on the 100-point scale
along with sensory descriptions for the samples evaluated
in this study.

After grading and achieving the desired SIincrement, all
the samples in the fillet form were immediately individ-
ually packaged in sterile vacuum packs, labeled with the
corresponding SI number, and frozen. Fish skin was left on
the samples for croaker, red snapper, and weakfish, while
the skin had been previously removed from the mahi-mabhi
samples. Frozen samples were received at our lab in the
sterile vacuum packs that had been shipped on ice. Sam-
ples were immediately stored at —20°C until prepared for
analysis.

2.2 | Sample preparation and e-nose
measurement

The MSEM 160 (Sensigent LLC, Baldwin Park, CA, USA)
portable multi-sensor environmental monitor was used to
analyze the volatile compounds from the four fish species.
The MSEM 160 sensor is equipped with an array of 32
gas sensors including temperature (sensor 1), humidity
(sensor 2), metal oxide semiconductor sensors (MOS: sen-
sors 5-12), electrochemical (EC: sensor 13 (H,S), sensor 14
(NHj3), sensor 15 (hydrocarbon)), photoionization (PI: sen-
sor 16 (total volatile organic carbon (TVOC))), and polymer
composite (PCS: sensors 17-32) sensors. Sensors 3 (addi-
tional temperature) and 4 (additional humidity) were inac-
tive for this study which left 30 sensors for data collection.
In its fully configured format, the device is 12 cm high x
18 cm wide X 20 cm deep and contains wireless commu-
nications which could allow for portable measurements.
While the instrument contains a small on-board screen
and internal computer for full portability, an externally
connected monitor and keyboard/mouse were used during
this method development research.

At the beginning of each day of data collection, the
instrument was turned on for an hour to stabilize the sen-
sor responses. Prior to the data collection, a sample (ran-
domized with respect to increment number) was taken out
of the freezer, the fillet immediately crushed into pieces
(with the skin if containing), the flesh weighed into two
10 g portions, and each portion placed in a separate 250-mL
wide-mouth septa jar that was sealed with a PTFE/silicone
septum-containing screw cap (Fisher Scientific, Waltham,
MA, USA). The jars were used as-is from the manufac-
turer and were not reused during these exploratory stud-
ies in order to eliminate potential variability from clean-
ing. The jars were placed in an approximately 30°C oven
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TABLE 1 NSSE sensory information for the seafood samples evaluated in this study

Sensory scores and NSSE comments (when available)

Sensory increment Mahi-Mahi Croaker Red snapper Weakfish

1 - Pass, most fresh 15-20 20+, Pondy 20-25, Citrus 20+, Briny

2 - Pass 25-30 24-25, Neutral 25-30, Neutral 25-30, Neutral

3 - Pass 30-40 30-35, Stale 30-35, Stale 30-35, Stale

4 - Borderline pass 45+ 40-45, Oxidized/fishy 45+, Strong stale 40-45, Oxidized

5 — Borderline fail 55-60 55-65, Sour 55-60, Sour 55-60, Slight sour

6 — Fail 65-70 65-70, Strong sour 60-70, Strong sour 65-70, Sour

7 - Fail, most decomposed 75+ 70+, Garbage 70+, Yeasty 68-75, Strong

sour/fermented

for 40 min to allow for headspace equilibration. A 3% 2.3 | Multivariate data analysis

inch needle (gauge size 14) was coupled to the MSEM
sampling and exhaust ports via 1/8 inch ID Tygon tubing
and Luer lock connections in order to draw-in/exhaust the
headspace gas to/from septa jars. The instrument flow rate
was 450 mL/min, and the data acquisition rate was 1s. The
instrument was operated in Triggered Mode for acquisition
which consists of three stages: pre-sample purge, sample,
and post-sample purge. For the seafood sample analysis
these were set to: (1) 90 s pre-sample baseline purge during
which carbon-filtered ambient air was passed through the
sensors; (2) 90 s sample draw during which the headspace
of the sample was drawn through the sample port, and the
exhaust from the MSEM was connected back into the con-
tainer jar to form a closed-loop system; and (3) 90 s post-
sample purge during which carbon-filtered ambient air
was passed through the sensors. Additionally, a clean air
cycle (180 s) to purge the system was performed before each
sample measurement. This equates to a total of approxi-
mately 7.5 min per sample measurement cycle.

The raw sensor readings for each sample were saved
in .CSV file format. The raw sensor data files were then
pre-processed using the CDAnalysis software (Version 11.2,
Sensigent LLC) prior to the application of a pattern recog-
nition algorithm. For each sample measurement, the AR/R
value was computed, as the change in resistance from a
baseline value prior to the start of the sample exposure
(AR) which was then divided by the baseline value (R).
Thirty-two (4 fillets for each SI 1-7 plus 3 more fillets,
respectively, from SI 3 and 5) mahi-mabhi, 35 (5 fillets for
each SI 1-7) croaker and red snapper, and 34 weakfish (5
fillets for each SI 1 and 3-7, 4 fillets for SI 2) samples were
used for the e-nose data collections. Duplicate measure-
ments were collected from two separate portions of a fillet.
Due to data collection issues, data files for 3 red snapper,
and one croaker and one weakfish were not available, thus
leaving 64, 69, 67, 67, total measurements for mahi-mabhi,
croaker, red snapper, and weakfish, respectively, for model
development.

The e-nose data were analyzed by two different chemomet-
ric tools for data exploration and/or classification. Princi-
pal component analysis (PCA) and SVM were performed
using PLS_Toolbox chemometric software (version 8.6.1,
Eigenvector Research Inc., Wenatchee, WA, USA) and Sen-
sigent’s Chemometric Data Analysis (CDAnalysis) soft-
ware. Different pre-processing methods such as Savitsky—
Golay (Sav-Gol) using a first-order polynomial fit, baseline
correction, and area normalization, alone or in combi-
nation, were applied to the raw sensor data to remove
artifacts such as high and low frequency noise, to improve
the signal-to-noise (S/N) ratio, and to correct for the effect
of changing sensor response baselines during measure-
ment. The optimum pre-processing method/combination
was selected based on the highest correct classification
rates provided by the pattern recognition algorithm.

PCA was implemented as a data exploration and visu-
alization tool. PCA reduces the dimensionality from many
sensor responses (here 30 sensors), to a much smaller set
of principal components (PCs). The first principal com-
ponent (PC1) captures the largest possible variance in the
data, while each succeeding component (PC2, PC3, etc.)
captures the next largest variances. Often two or three prin-
cipal components provide an adequate representation of
the data which is most commonly presented on a PCA
scores plot (Karunathilaka et al., 2016). In this study, PCA
was used to explore the possibility of differentiating the
samples that failed the sensory evaluation (SIs 5-7) from
those that passed (SIs 1-4) and to identify the most infor-
mative sensors that best discriminated between these two
sample groups.

SVM is a well-known supervised classification approach
that is particularly useful for overlapping or poorly
resolved complex data sets with inherent nonlinearity. In
SVM, the input data are first mapped into a high dimen-
sional space using a kernel function, and then samples
are separated into different classes using a hyperplane
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TABLE 2 Support vector machine (SVM) classification results for the models developed for the e-nose sensor data obtained for four
species of fish. Results are shown for the prediction of a calibration-independent set of test samples

Test set (predicted)
Fish type Test set # of class samples SI1-4 SI5-7
Mahi-mahi SI1—4 16 16 0
SI15—7 12 0 12
Croaker SI1—4 16 16 0
SI5—7 12 0 12
Red snapper SI1—4 16 16 0
SI15—7 12 1 11
Weakfish SI1—4 16 16 0
SI5—7 12 2 10

decision surface (Karunathilaka et al., 2020). Using a leave-
one-out cross-validation (LOO-CV) algorithm, CDAnaly-
sis finds the optimum kernel width in classification model
development. The performance of SVM models were eval-
uated both based on a LOO-CV and by using a calibration-
independent test set of samples. For test set prediction, the
total data set of a fish species was randomly partitioned
into a training set and a test set. Training models were
developed using 36 (SIs 1-4 = 18 and 5-7 = 18) samples for
mahi-mahi, 41 (SIs 1-4 = 23 and 5-7 = 18) for croaker, 39
(SIs 1-4 = 24 and 5-7 = 15) for red snapper, and 39 (SIs 1-
4 = 21 and 5-7 = 18) for weakfish. The remaining samples
of each fish type were used for prediction (Table 2).

3 | RESULTS AND DISCUSSION
3.1 | Principal component analysis

PCA was performed as a way to visually evaluate the possi-
bility of differentiating fish samples that failed the sensory
evaluation from those that passed. In many e-nose applica-
tions, not all the sensors are important for discrimination
due to the specific volatiles evaluated and their interac-
tions with the various sensors. Including non-informative
sensors could contribute noise to the supervised classifica-
tion methods thus increasing the classification error and
lowering the predictive capability. The sensors that are
most effective for discriminating the two types of samples
were identified using the instrument-dedicated CDAnal-
ysis software. CDAnalysis uses “Importance Index (II)”
(also called discrimination power (Robotti & Marengo,
2016)) to determine sensor contribution. The sensors with
higher II values are effective for discriminating the ana-
lytes in the training set. Initial PC analysis using all 30
active sensors was performed and based on a default
threshold value of 1.5 for II, MO sensors 5-12 were found
to be the most effective for discriminating between sen-

sory passed versus failed samples. These eight sensors had
II values higher than that of the default threshold value
whereas the other sensors had comparatively lower values
(less than 1).

The selection of MOS as the informative sensor from
this study was consistent with the literature reports
that indicated that the MOS were the most widely used
EN technique for fish freshness assessment (Wu et al.,
2019). In e-nose, each sensor has a unique sensitivity
and selectivity profile. As a group, their responses give
a unique pattern for the volatile organic headspace
compounds of the test sample (Di Natale et al., 2001;
Green et al., 2011). The sensor responses, normalized to
the highest response, collected during the sample purge
cycle for these eight informative MO sensors are shown in
Figure la—d and supplemental Figure la-d for represen-
tative measurements collected from croaker fillets (one
sample each from SIs 1-7). For the MOS sensors, upon
“smelling” each sample, the e-nose response decreased
over time as the volatiles produced by the sample were
analyzed. The more decomposed samples (black, red, and
purple lines) showed a greater decrease from the initial
baseline prior to reaching steady state than the sensory
pass samples (green, blue, yellow, and pink lines). E-nose
responses, however, were not completely linear with the
corresponding sensory increment number, especially for
SIs 1-4.

PCA was then performed using only the informative
sensors (MO sensors 5-12) to explore the possibility of bet-
ter differentiating between two classes of samples (sensory
test passed vs. failed). Figure 2a-d show the PCA scores
of the first two components which explained 95.6%, 97.3%,
97.0%, and 93.6% of the cumulative variances of mahi-
mabhi, croaker, red snapper, and weakfish data, respec-
tively. Discrimination between the two types of sample
groups was observed for all four types of fish (Figure 2a—-d),
as seen in the NSSE passed samples (blue dots) hav-
ing clustering generally separated from the NSSE failed
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FIGURE 1 Representative e-nose sensor response for croaker measurements from four sensors: (a) MO sensor 5, (b) MO sensor 6, (c)
MO sensor 7, and (d) MO sensor 8. The line colors of green, blue, yellow, pink, black, red, and purple correspond to responses from SIs 1-7,

respectively

samples (red squares). SIs 1-4 were clustered together in
the positive side of the PC1, while those of 5-7 were clus-
tered together in the negative side. Generally, SI 7 had the
most negative PC score values (for clarity, representative
labeled in Figure 2a-d), hence, were located furthest away
from the cluster for SIs 1-4. This is consistent with the sen-
sor responses observed in Figure la-d and supplemental
Figure 1a—d where the most decomposed samples (SI 7)
had the lowest sensor responses.

From these plots, it appears that the degree of discrimi-
nation is dependent upon the fish type. This indicates that
a specific classification model for each fish species would
be needed for better discrimination between the two types
of samples (i.e., a universal model that combines all fish
types together would be less sensitive). These finding were
consistent with similar studies by Mai et al. (2009) and
El Barbri et al. (2008) who have reported that fresh fish
clustered on one side of PC1, and, with storage time, the

data moved to the other side of the PC. This observed neg-
ative correlation of PC scores with SI number is consis-
tent with the observed sensor responses (Figure 1a-d and
supplement Figures 1a-d) in which the responses showed
greater decrease for the more decomposed samples. Based
on these findings, the e-nose appeared to be a promising
tool in detecting fish spoilage, and, due to the nonlinear-
ity of the sensor responses, the nonlinear pattern recogni-
tion method SVM was applied to further discriminate the
samples.

3.2 | Support vector machine
classification

The FDA classifies seafood samples as decomposed
(fail) or non-decomposed (pass) for safety determination.
Therefore, the initial target of the e-nose classification
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FIGURE 2 Unsupervised PCA score plots of the e-nose data collected from the 8 informative MO sensors for (a) mahi-mahi, (b) croaker,
(c) red snapper, and (d) weakfish. In each plot, the sensory passed samples (SI 1-4) are shown as red squares while the sensory failed samples
(SI 5-7) are shown as blue circles. Representative SI 7 points are labeled to show position on the plots. The black dotted circle represents the

95% confidence line for PC scores

methodology using SVM was designed to demonstrate this
capability. SVM classification models were developed sep-
arately for each fish species using the CDAnalysis soft-
ware in order to discriminate samples that failed the sen-
sory evaluation (SI 5-7) from those that passed (SI 1-4).
SVM models were developed using only the eight infor-
mative MOS sensors indicated from the PC analysis. Sav—
Gol smoothing filter with or without baseline correction
followed by an area normalization was evaluated, and
Sav-Gol smoothing filter alone was found to be the opti-
mum data pre-processing method based on the highest
correct classification rates for all fish types except for
mahi-mahi. Raw data for mahi-mahi were preprocessed
using Sav-Gol smoothing followed by a baseline correc-
tion and an area normalization. PCA was applied to visu-
alize the SVM cross-validation class boundaries in two

dimensions as shown in Figure 3a-d where the yellow cir-
cles represent the sensory test passed samples while the
green squares represent the sensory test failed samples.
Figure 3a,b show a 100% correct classification with all sen-
sory test passed samples on the left side of the separat-
ing boundary (blue line) while those that failed the sen-
sory test were on the right side. One misclassified sensory
test failed sample (green square among the yellow circles,
Figure 3c) and a misclassified sensory test passed samples
(yellow circle among the green squares, Figure 3d) were
observed. The percentage correct classification rates from
cross-validation were then evaluated. For CV, the SVM pre-
dicted percentage correct classification percentage rates
were 100, 100, 97, and 97 for mahi-mahi, croaker, red
snapper, and weakfish data, respectively. High accuracy
in predicting the sensory evaluation passed versus failed
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FIGURE 3 SVM cross-validation results for (a) mahi-mabhi, (b) croaker, (c) red snapper, and (d) weakfish. PCA was used to visualize the

SVM class boundaries (blue line in just two dimensions). In each plot, the sensory passed samples (SI 1-4) are shown as yellow circles while

the sensory failed samples (SI 5-7) are shown as green squares

samples was observed, as the correct classifications were
97% or greater for each fish species.

The prediction performance of sensor-SVM combined
method was further evaluated by training an SVM model
and testing the prediction performance using a calibration-
independent set of samples. The prediction performances
of the four SVM models developed for each fish type are
shown in Table 2. 100% correct classification rate was
observed for both mahi-mahi and croaker data. However,
one red snapper and two weakfish sensory evaluation
spoiled samples were incorrectly classified as “passing”
based on the SVM classification (Table 2) resulting in cor-
rect classification rates of 96% for red snapper and 93% for
weakfish. These incorrectly classified samples were from
SI5. This increment was samples that were just above the
level considered fit for human consumption, and these
samples were close to the classification threshold thus

making it challenging to have full separation based on
the positioning of the separating surface between the data
classes. Overall, this combined method was found to be
accurate in classifying passed/failed samples with 93-100%
correct classification rates for the four species evaluated in
this study.

Similar work using e-nose systems, but without con-
trolled lab degradation and NSSE scoring, has shown com-
parable results to those here-in. El Barbri et al. (2008)
used a portable e-nose system with MOS and chemomet-
ric modeling to evaluate freshness of Moroccan sardines.
In this work, the fish were aged at 4°C, and the accuracy
with regard to predication of storage days and associated
freshness was 93.75%. Chantarachoti and colleagues also
employed a portable e-nose detector to evaluate lab-aged,
whole salmon samples, with correct classification rates of
85% and 92% for belly cavity volatiles for samples held
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at 14°C for up to 3 days and slush ice for up to 16 days,
respectively (Chantarachoti et al., 2006). Interestingly, the
authors note that improvements in the method could be
made by using more diverse samples, such as varied har-
vest times and species, along with studying instrument
reproducibility and repeatability, in order to fully employ
the device. In this work, by combining both gold-standard
NSSE-graded samples along with diversity in species and
multiple days of analysis, the use of e-nose technology has
been further vetted.

In this work, a classification method to discriminate
sensory-analyzed pass samples from failed ones was devel-
oped using the data collected from an e-nose sensor. This
developed method can be used to classify fish spoilage with
the potential for reduced costs, simplicity, and without
the use of any chemicals with respect to other analytical
methods. However, several steps in the experimental setup
need to be further evaluated to improve upon the sample
preparation and data acquisition for potential field deploy-
ment. In the current settings, samples were kept at an ele-
vated temperature for 40 min in 250 mL jars to equilibrate
the headspace. In field applications, however, it would be
beneficial to have an efficient sampling protocol with a
shorter equilibration time that uses a smaller sized vessel
or a sniffer accessory. Additionally, in the current instru-
mental design, there is no integrated chemometric soft-
ware in the device for pattern recognition which necessi-
tates data file transfer and off-line data analysis. Further
investigations into the need for models for each fish species
are being evaluated, as well as evaluation of the natural
diversity (e.g., subspecies, geographical region of fishing,
fishing season) to understand these effects on the models.
Finally, studies to assess the ability to transfer models and
instrument-to-instrument variability would be needed for
full deployment.

4 | CONCLUSION

Here we report the development of a simple and accu-
rate method to detect fish decomposition based on data
collected by using an e-nose sensor and the application
of a pattern recognition algorithm. A headspace sampling
method was developed and employed in a laboratory set-
ting. Sensor array data coupled with PCA could be used
to visually distinguish between the NSSE evaluated passed
versus failed samples. Eight MOS sensors were found to be
the most important for discrimination of decomposition.
The prediction performance based on an internal valida-
tion based on CV and an external test set prediction indi-
cated that classification models built for the e-nose data
can detect fish decomposition with high accuracy. For CV,

the SVM correct classification rates were 97-100% for the
four species of fish, and 93-100% correct classification rates
were observed for the prediction of the test sets of sam-
ples with failing samples only at the borderline pass/fail
boundary. Future studies will include the development of
a more efficient sampling method to determine the capa-
bility of the e-nose in predicting fish decomposition during
field applications.
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